7.下列結(jié)論正確的命題有②; (填寫(xiě)所有正確命題的編號(hào))
①若直線l∥平面α,直線l∥平面β,則α∥β,
②若直線l⊥平面α,直線l⊥平面β,則α∥β,
③若兩直線l1、l2與平面α所成的角相等,則l1∥l2,
④若直線l上兩個(gè)不同的點(diǎn)A、B到平面α的距離相等,則l∥α.

分析 對(duì)4個(gè)命題分別進(jìn)行判斷,即可得出結(jié)論.

解答 解:①若直線l∥平面α,直線l∥平面β,則α∥β或α,β相交,故不正確;
②若直線l⊥平面α,直線l⊥平面β,則α∥β,正確;
③與同一平面所成角相等的兩條直線的位置關(guān)系可以是相交、平行與異面,故③不對(duì);
④若直線l上兩個(gè)不同的點(diǎn)A、B到平面α的距離相等,則l∥α或l,α相交,不正確.
故答案為②.

點(diǎn)評(píng) 本題考查空間中直線與平面之間的位置關(guān)系,解題的關(guān)鍵是熟練掌握空間中線線平行、面面平行、線線垂直的條件及有著較強(qiáng)的空間想像能力,本題考查了推理判斷的能力

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.求下列關(guān)于x的不等式的解集:x2-3x+2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知定義在R上的可導(dǎo)函數(shù)f(x)滿(mǎn)足f′(x)+f(x)<0,設(shè)a=f(m-m2),b=e${\;}^{{m}^{2}-m+1}$•f(1),則a,b的大小關(guān)系是(  )
A.a>bB.a<b
C.a=bD.a,b的大小與m的值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$的離心率的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知焦點(diǎn)均在x軸上的雙曲線C1,與雙曲線C2的漸近線方程分別為y=土k1x 與y=±k2x,記雙曲線C1的離心率e1,雙曲線C2的離心率e2,若k1k2=1,則e1e2的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.函數(shù)y=loga(x-2)的圖象經(jīng)過(guò)一個(gè)定點(diǎn),該定點(diǎn)的坐標(biāo)為(3,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=x|x-2|.
(1)作出函數(shù)f(x)=x|x-2|的大致圖象;
(2)若方程f(x)-k=0有三個(gè)解,求實(shí)數(shù)k的取值范圍.
(3)若x∈(0,m](m>0),求函數(shù)y=f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)集合A={x|2kπ+$\frac{π}{3}$<x<2kπ+$\frac{5π}{3}$,k∈Z},B={x|-4<x<4},求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,正方形ABCD所在平面與三角形CDE所在平面相交于CD,AE⊥平面CDE,且AE=1,AB=2.
(Ⅰ)求證:AB⊥平面ADE;
(Ⅱ)求凸多面體ABCDE的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案