現(xiàn)要用一段長(zhǎng)為l的籬笆圍成一邊靠墻的矩形菜園(如圖所示),則圍成的菜園最大面積是
 
考點(diǎn):基本不等式
專(zhuān)題:不等式的解法及應(yīng)用
分析:由題意可得:x+2y=l,x>0,y>0.利用基本不等式即可得出xy的最大值.
解答: 解:由題意可得:x+2y=l,x>0,y>0.
l≥2
2xy
,解得xy≤
l2
8
,當(dāng)且僅當(dāng)x=2y=
l
2
時(shí)取等號(hào).
∴S=xy
l2
8

∴則圍成的菜園最大面積是
l2
8

故答案為:
l2
8
點(diǎn)評(píng):本題考查了基本不等式的性質(zhì)和矩形的面積,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)總體分為甲、乙兩層,用分層抽樣方法從總體中抽取一個(gè)容量為20的樣本.已知乙層中每個(gè)個(gè)體被抽到的概率都為
1
9
,則總體中的個(gè)體數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x是實(shí)數(shù),且滿(mǎn)足等式
x
2
+
1
2x
=cosθ
,則實(shí)數(shù)θ等于(以下各式中k∈Z)( 。
A、2kπ
B、(2k+1)π
C、kπ
D、kπ+
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)均為正數(shù)的數(shù)列{an}中,a1=1,Sn是{an}的前n項(xiàng)和,對(duì)任意的正整數(shù)n,都有2Sn=2P
a
2
n
+Pan-P(P∈R)都成立,
(1)求常數(shù)P的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正實(shí)數(shù)a,b滿(mǎn)足:(a-1)(b-1)=4,則ab的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α,β是方程x2+ax+2b=0的兩根,且α∈[0,1],β∈[1,2],a∈R,b∈R,求
b-3
a-3
的最大值與最小值之和為( 。
A、
13
12
B、
3
2
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=e|x|,則
4
-2
f(x)dx=( 。
A、e4-e2
B、e4+e2
C、-e4+e2+2
D、e4+e2-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知命題p:方程
x2
m-4
+
y2
m-2
=1
表示焦點(diǎn)在y軸的雙曲線;命題q:關(guān)于x的不等式x2-2x+m>0的解集是R;
若“p∧q”是假命題,“p∨q”是真命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M滿(mǎn)足{-1,3}⊆M⊆{-1,1,2,3}
(1)若M中所有元素之和為3,S是M中所有元素之積,求S的值;
(2)寫(xiě)出所有滿(mǎn)足條件的集合M.

查看答案和解析>>

同步練習(xí)冊(cè)答案