分析 (1)本題是一個古典概型,用(a,b)表示一枚骰子投擲兩次所得到的點數(shù)的事件,基本事件(a,b)的總數(shù)有36個滿足條件的事件是二次方程x2-2(a-2)x-b2+16=0有實根,根據(jù)實根與系數(shù)的關(guān)系式,得到概率.
(2)本題是一個幾何概型,試驗的全部結(jié)果構(gòu)成區(qū)域Ω={(a,b)|2≤a≤6,0≤b≤4},滿足條件的事件為:B={(a,b)|2≤a≤6,0≤b≤4,(a-2)2+b2<16},做出兩者的面積,得到概率
解答 解:(1)由題意知本題是一個古典概型
用(a,b)表示一枚骰子投擲兩次所得到的點數(shù)的事件
依題意知,基本事件(a,b)的總數(shù)有36個
二次方程x2-2(a-2)x-b2+16=0有實根,
等價于
△=4(a-2)2+4(b2-16)≥0,
即(a-2)2+b2≥16,
“方程有兩個根”的事件為A,則事件A包含的基本事件為(1,6),(1,5).(1,4),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,4),(4,5),(4,6),(5,3),(5,4),(5,5),(5,6),(6,1)、(6,2)、(6,3)、(6,4),(6,5),(6,6),共22個
∴所求的概率為P(A)=$\frac{22}{36}=\frac{11}{18}$;
(2)由題意知本題是一個幾何概型,;
試驗的全部結(jié)果構(gòu)成區(qū)域Ω={(a,b)|2≤a≤6,0≤b≤4},
其面積為S(Ω)=16
滿足條件的事件為:B={(a,b)|2≤a≤6,0≤b≤4,(a-2)2+b2<16}
其面積為S(B)=$\frac{1}{4}$×π×42=4π
∴所求的概率P(B)=$\frac{4π}{16}=\frac{π}{4}$;
點評 本題考查古典概型和幾何概型,幾何概型和古典概型是高中必修中學(xué)習(xí)的,高考時常以選擇和填空出現(xiàn),有時文科會考這種類型的解答題目
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com