【題目】經(jīng)市場(chǎng)調(diào)查,某商品在過去的100天內(nèi)的銷售量(單位:件)和價(jià)格(單位:元)均為時(shí)間 (單位:天)的函數(shù),且銷售量滿足=,價(jià)格滿足=.
(1)求該種商品的日銷售額與時(shí)間的函數(shù)關(guān)系;
(2)若銷售額超過16610元,商家認(rèn)為該商品的收益達(dá)到理想程度,請(qǐng)判斷該商品在哪幾天的收益達(dá)到理想程度?
【答案】(1)=,
(2)天數(shù)為第53,54,…60,61天,共9天.
【解析】試題分析:(1)利用= ,通過的范圍求出函數(shù)的解析式;(2)令解出的范圍即可得出結(jié)論.
試題解析:(1)由題意知,當(dāng)時(shí), = ==,
當(dāng)時(shí), = ==,
所求函數(shù)關(guān)系=.
(2)當(dāng)時(shí), ==,
∴函數(shù)在上單調(diào)遞增,
∴= = (元),
當(dāng)時(shí), ==,
∴函數(shù)在上單調(diào)遞減,
∴= = (元).
若銷售額超過16610元,當(dāng)時(shí),函數(shù)單調(diào)遞減,
故只有第61天滿足條件.
當(dāng)時(shí),經(jīng)計(jì)算滿足條件,
又函數(shù)在上單調(diào)遞增,所以第53,54,…,60天,滿足條件.
即滿足條件的天數(shù)為第53,54,…60,61天,共9天.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x∈[﹣1,0],θ∈[0,2π),二元函數(shù) 取最小值時(shí),x=x0 , θ=θ0則( )
A.4x0+θ0=0
B.4x0+θ0<0
C.4x0+θ0>0
D.以上均有可能.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)U=R,A={x|x≤2,或x≥5},B= ,C={x|a<x<a+1}
(1)求A∪B和(UA)∩B
(2)若B∩C=C,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ (a>0)
(1)若函數(shù)f(x)在x=2處的切線與x軸平行,求實(shí)數(shù)a的值;
(2)討論函數(shù)f(x)在區(qū)間[1,2]上的單調(diào)性;
(3)證明: >e.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象過點(diǎn),且與軸有唯一的交點(diǎn).
(1)求的表達(dá)式;
(2)設(shè)函數(shù),若上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),記此函數(shù)的最小值為,求的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方形的邊長(zhǎng)為,已知,將沿邊折起,折起后點(diǎn)在平面上的射影為點(diǎn),則翻折后的幾何體中有如下描述:①與所成角的正切值為;②;③;④平面平面,其中正確的命題序號(hào)為___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)將函數(shù)化成的形式,并求函數(shù)的增區(qū)間;
(2)若函數(shù)滿足:對(duì)任意都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com