已知橢圓的離心率為,直線與圓相切.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓的交點(diǎn)為,求弦長(zhǎng).
(1);(2).
解析試題分析:(1)利用直線與圓相切,先求出的值,再結(jié)合橢圓的離心率求出的值,最終確定橢圓的方程;(2)先設(shè)點(diǎn),聯(lián)立直線與橢圓的方程,消去可得,然后根據(jù)二次方程根與系數(shù)的關(guān)系得到,最后利用弦長(zhǎng)計(jì)算公式求解即可.
試題解析:(1)由直線與圓相切得 2分
由得 4分
∴橢圓方程為 6分
(2) 8分
,設(shè)交點(diǎn)坐標(biāo)分別為 9分
則 11分
從而
所以弦長(zhǎng) 14分.
考點(diǎn):1.直線與圓的位置關(guān)系;2.橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì);3.直線與橢圓的位置關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓=1(a>b>0)的左焦點(diǎn)為F,離心率為,過點(diǎn)F且與x軸垂直的直線被橢圓截得的線段長(zhǎng)為.
(1)求橢圓的方程;
(2)設(shè)A,B分別為橢圓的左、右頂點(diǎn),過點(diǎn)F且斜率為k的直線與橢圓交于C,D兩點(diǎn).若+=8,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知定點(diǎn),曲線C是使為定值的點(diǎn)的軌跡,曲線過點(diǎn).
(1)求曲線的方程;
(2)直線過點(diǎn),且與曲線交于,當(dāng)的面積取得最大值時(shí),求直線的方程;
(3)設(shè)點(diǎn)是曲線上除長(zhǎng)軸端點(diǎn)外的任一點(diǎn),連接、,設(shè)的角平分線交曲線的長(zhǎng)軸于點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓與橢圓中心在原點(diǎn),焦點(diǎn)均在軸上,且離心率相同.橢圓的長(zhǎng)軸長(zhǎng)為,且橢圓的左準(zhǔn)線被橢圓截得的線段長(zhǎng)為,已知點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn).
⑴求橢圓與橢圓的方程;
⑵設(shè)點(diǎn)為橢圓的左頂點(diǎn),點(diǎn)為橢圓的下頂點(diǎn),若直線剛好平分,求點(diǎn)的坐標(biāo);
⑶若點(diǎn)在橢圓上,點(diǎn)滿足,則直線與直線的斜率之積是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過原點(diǎn),而且與橢圓相交于兩點(diǎn),為線段的中點(diǎn).
(1)問:直線與能否垂直?若能,之間滿足什么關(guān)系;若不能,說明理由;
(2)已知為的中點(diǎn),且點(diǎn)在橢圓上.若,求橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知點(diǎn),是動(dòng)點(diǎn),且的三邊所在直線的斜率滿足.
(1)求點(diǎn)的軌跡的方程;
(2)若是軌跡上異于點(diǎn)的一個(gè)點(diǎn),且,直線與交于點(diǎn),問:是否存在點(diǎn),使得和的面積滿足?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(1)已知點(diǎn)和,過點(diǎn)的直線與過點(diǎn)的直線相交于點(diǎn),設(shè)直線的斜率為,直線的斜率為,如果,求點(diǎn)的軌跡;
(2)用正弦定理證明三角形外角平分線定理:如果在中,的外角平分線與邊的延長(zhǎng)線相交于點(diǎn),則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,橢圓經(jīng)過點(diǎn),其左、右頂點(diǎn)分別是、,左、右焦點(diǎn)分別是、,(異于、)是橢圓上的動(dòng)點(diǎn),連接交直線于、兩點(diǎn),若成等比數(shù)列.
(Ⅰ)求此橢圓的離心率;
(Ⅱ)求證:以線段為直徑的圓過點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線:和⊙:,過拋物線上一點(diǎn)作兩條直線與⊙相切于、兩點(diǎn),分別交拋物線為E、F兩點(diǎn),圓心點(diǎn)到拋物線準(zhǔn)線的距離為.
(1)求拋物線的方程;
(2)當(dāng)的角平分線垂直軸時(shí),求直線的斜率;
(3)若直線在軸上的截距為,求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com