6.已知實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+y≥-1}\\{x-y≤-1}\\{2x-3y≥-6}\end{array}\right.$
(1)求目標(biāo)函數(shù)z=2x-y的取值范圍;
(2)求目標(biāo)函數(shù)z=x2+y2的最大值.

分析 (1)通過實(shí)數(shù)x,y滿足約束條件直接畫出此二一元次不等式組表示的平面區(qū)域;直接求出目標(biāo)函數(shù)z=2x-y結(jié)果的可行域內(nèi)的頂點(diǎn),即可求出z的最大值和最小值;
(2)z=x2+y2 就是可行域內(nèi)的點(diǎn)到坐標(biāo)原點(diǎn)距離的平方,求出最大值即可.

解答 解:(1)實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+y≥-1}\\{x-y≤-1}\\{2x-3y≥-6}\end{array}\right.$
的可行域如圖:
直線z=2x-y經(jīng)過$\left\{\begin{array}{l}{x-y=-1}\\{2x-3y=-6}\end{array}\right.$,
當(dāng)x=3,y=4時(shí)z取最大值2;
直線z=2x-y經(jīng)過$\left\{\begin{array}{l}{2x-3y=6}\\{x+y=-1}\end{array}\right.$,解得交點(diǎn)B,即x=$-\frac{8}{5}$,y=$\frac{3}{5}$時(shí),z=2x-y取最小值$-\frac{19}{5}$.
z的范圍是[$-\frac{19}{5}$,2].
(2)由可行域可知,A當(dāng)x=3,y=4時(shí),z=x2+y2取得最大值為32+42=25.

點(diǎn)評 本題考查簡單的線性規(guī)劃的應(yīng)用,考查計(jì)算能力與作圖能力,以及表達(dá)式的幾何意義.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知x,y∈R,則“x>0,y<0”是“xy<0”的(  )
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.一拋物線形拱橋,當(dāng)水面寬4米時(shí),水面離拱頂2米,若水面下降1米,則水面的寬為( 。
A.$\sqrt{6}$米B.2$\sqrt{6}$米C.6米D.8米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知點(diǎn)P(x,y)在橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$上運(yùn)動,設(shè)$d=\sqrt{{x^2}+{y^2}+4y+4}-\frac{x}{2}$,則d的最小值為( 。
A.$\sqrt{5}-2$B.$2\sqrt{2}-1$C.$\sqrt{5}-1$D.$\sqrt{6}-1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知直線L被兩平行直線L1:2x-5y+9=0與L2:2x-5y-7=0所截線段AB的中點(diǎn)恰在直線x-4y-1=0上,圓C:(x+4)2+(y-1)2=25.
(1)證明直線L與圓C恒有兩個交點(diǎn);
(2)當(dāng)直線L被圓C截得的弦最短時(shí),求出直線方程和最小弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在數(shù)列{an}中,a1=3,a17=67,通項(xiàng)公式是關(guān)于n的一次函數(shù).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求a2013;
(3)2015是否為數(shù)列{an}中的項(xiàng)?若是,為第幾項(xiàng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知冪函數(shù)$y={x}^{{p}^{2}-2p-3}$(p∈N*)的圖象關(guān)于y軸對稱,且在(0,+∞)上是減函數(shù),實(shí)數(shù)a滿足$({a}^{2}-1)^{\frac{p}{3}}<(3a+3)^{\frac{p}{3}}$,則a的取值范圍是(1,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.將函數(shù)$y=2sin(2x+\frac{π}{6})$的圖象向右平移$\frac{1}{4}$個周期后,所得圖象對應(yīng)的函數(shù)為f(x),則函數(shù)f(x)的單
調(diào)遞增區(qū)間( 。
A.$[kπ-\frac{π}{12},kπ+\frac{5π}{12}](k∈Z)$B.$[kπ+\frac{5π}{12},kπ+\frac{11π}{12}](k∈Z)$
C.$[kπ-\frac{5π}{24},kπ+\frac{7π}{24}](k∈Z)$D.$[kπ+\frac{7π}{24},kπ+\frac{19π}{24}](k∈Z)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.對于命題p:?x∈R,使得x2+x+1<0,則¬p是( 。
A.¬p:?x∈R,x2+x+1>0B.¬p:?x∈R,x2+x+1≠0
C.¬p:?x∈R,x2+x+1≥0D.¬p:?x∈R,x2+x+1<0

查看答案和解析>>

同步練習(xí)冊答案