三棱柱中,側(cè)棱與底面垂直,,分別是,的中點(diǎn).
⑴求證:平面;
⑵求證:平面;
⑶求二面角的余弦值.
證明見解析 3)
⑴連結(jié),.在中,
,的中點(diǎn),∴
又∵平面,
平面.                   --------------------4分
⑵如圖,以為原點(diǎn)建立空間直角坐標(biāo)系

,,,
,,
設(shè)平面的法向量為

,則,∴ .∴
平面.                     --------------------9分
⑶設(shè)平面的法向量為,

,則


所求二面角的余弦值為.   --------------------14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(13分)
如圖,在底面是正方形的四棱錐P—ABCD中,PA⊥面ABCD,BD交AC于點(diǎn)E,F(xiàn)是PC中點(diǎn),G為AC上一點(diǎn).
(I)求證:BD⊥FG;
(II)確定點(diǎn)G在線段AC上的位置,使FG//平面PBD,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖,在正方體中,點(diǎn)的中點(diǎn).               
(1)求證:;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題


已知直線⊥平面,直線平面,給出下列四個(gè)命題:
   ②    ③    ④ 
其中正確的命題是(  )
A.①②B.③④C.②④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知一圓錐面的頂點(diǎn)為S,軸線L與母線的夾角為30°,在軸線L上取一點(diǎn)C,使SC=4,過點(diǎn)C作一平面與軸線的夾角等于60°,則與截平面相切的兩個(gè)焦球中較小一個(gè)球的半徑為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題為真命題的是(  )
A.平行于同一平面的兩條直線平行B.垂直于同一平面的兩條直線平行
C.與某一平面成等角的兩條直線平行D.垂直于同一直線的兩條直線平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

右圖所示幾何體可以由下列哪個(gè)平面圖形繞直線l旋轉(zhuǎn)一周得到的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如下圖所示,在單位正方體ABCD—A1B1C1D1的面對(duì)角線A1B上存在一點(diǎn)P使得AP+D1P取得最小值,則此最小值為(   )

A.2B.
C.2+D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

AA1是長(zhǎng)方體的一條棱,這個(gè)長(zhǎng)方體中與AA1垂直的棱共有(   )條
A.2條B.4條C.6條D.8條

查看答案和解析>>

同步練習(xí)冊(cè)答案