12.已知點(diǎn)P是棱長(zhǎng)為1的正方體ABCD-A1B1C1D1的底面A1B1C1D1上一點(diǎn)(包括邊界),則$\overrightarrow{PA}•\overrightarrow{PC}$的取值范圍是$[\frac{1}{2},1]$.

分析 如圖所示,建立空間直角坐標(biāo)系.設(shè)P(x,y,0),(x,y∈[0,1]).可得$\overrightarrow{PA}•\overrightarrow{PC}$=-x(1-x)-y(1-y)+1=$(x-\frac{1}{2})^{2}$+$(y-\frac{1}{2})^{2}$+$\frac{1}{2}$=f(x,y).即可得出.

解答 解:如圖所示,建立空間直角坐標(biāo)系.
A1(0,0,0),A(0,0,1),C(1,1,1),
設(shè)P(x,y,0),(x,y∈[0,1]).
$\overrightarrow{PA}$=(-x,-y,1),$\overrightarrow{PC}$=(1-x,1-y,1),
∴$\overrightarrow{PA}•\overrightarrow{PC}$=-x(1-x)-y(1-y)+1
=$(x-\frac{1}{2})^{2}$+$(y-\frac{1}{2})^{2}$+$\frac{1}{2}$=f(x,y).
當(dāng)x=$\frac{1}{2}$,y=$\frac{1}{2}$時(shí),f(x,y)取得最小值$\frac{1}{2}$.
當(dāng)點(diǎn)P取(0,0,0),(1,0,0),(0,1,0),(1,1,0),f(x,y)取得最大值1.
∴f(x,y)∈$[\frac{1}{2},1]$.
故答案為:$[\frac{1}{2},1]$.

點(diǎn)評(píng) 本題考查了數(shù)量積運(yùn)算性質(zhì)、空間向量坐標(biāo)運(yùn)算性質(zhì)、數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知流程圖如圖所示,該程序運(yùn)行后,若輸出的a值為16,則循環(huán)體的判斷框內(nèi)①處應(yīng)填(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.70年代中期,美國(guó)各所名牌大學(xué)校園內(nèi),人們都像發(fā)瘋一般,夜以繼日,廢寢忘食地玩一個(gè)數(shù)學(xué)游戲.這個(gè)游戲十分簡(jiǎn)單:任意寫(xiě)出一個(gè)自然數(shù)N,并且按照以下的規(guī)律進(jìn)行變換:如果是個(gè)奇數(shù),則下一步變成3N+1;如果是個(gè)偶數(shù),則下一步變成$\frac{N}{2}$.不單單是學(xué)生,甚至連教師、研究員、教授與學(xué)究都紛紛加入.為什么這個(gè)游戲的魅力經(jīng)久不衰?因?yàn)槿藗儼l(fā)現(xiàn),無(wú)論N是怎樣一個(gè)數(shù)字,最終都無(wú)法逃脫回到谷底1.準(zhǔn)確地說(shuō),是無(wú)法逃出落入底部的4-2-1循環(huán),永遠(yuǎn)也逃不出這樣的宿命.這就是著名的“冰雹猜想”.按照這種運(yùn)算,自然數(shù)27經(jīng)過(guò)十步運(yùn)算得到的數(shù)為( 。
A.142B.71C.214D.107

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.方程log2(4x-3)=x+1的解集為{log23}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知${∫}_{0}^{2}$(3x2-1)dx=m,則$(1-x){({x^2}+\frac{1}{x})^m}$的展開(kāi)式中x4的系數(shù)是-20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知圓C:(x-$\sqrt{3}$)2+(y-1)2=1和兩點(diǎn)A(-t,0),B(t,0),(t>0),若圓上存在點(diǎn)P,使得∠APB=90°,則t的最大值是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下圖為某一函數(shù)的求值程序框圖,根據(jù)框圖,如果輸出的y的值為3,那么應(yīng)輸入x=( 。
A.1B.2C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)f(x)為奇函數(shù),g(x)為偶函數(shù),若f(x)+g(x)=x2-$\frac{1}{x}$,f(x)=-$\frac{1}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若復(fù)數(shù)z=$\frac{-i}{1+2i}$(i是虛數(shù)單位),則z的實(shí)部為$-\frac{2}{5}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案