7.已知${∫}_{0}^{2}$(3x2-1)dx=m,則$(1-x){({x^2}+\frac{1}{x})^m}$的展開式中x4的系數(shù)是-20.

分析 計(jì)算定積分得出m的值,再利用二項(xiàng)式定理求出(x2+$\frac{1}{x}$)m的展開式中含x3和x4的系數(shù),得出答案.

解答 解:m=${∫}_{0}^{2}$(3x2-1)dx=(x3-x)|${\;}_{0}^{2}$=6,
∴(x2+$\frac{1}{x}$)6的通項(xiàng)為Tr+1=${C}_{6}^{r}$(x2r($\frac{1}{x}$)6-r=${C}_{6}^{r}$x3r-6
令3r-6=3得r=3,∴(x2+$\frac{1}{x}$)6的展開式中含x3的系數(shù)為${C}_{6}^{3}$=20,
令3r-6=4得r=$\frac{10}{3}$,舍,∴(x2+$\frac{1}{x}$)6的展開式中不含x4項(xiàng).
∴$(1-x){({x^2}+\frac{1}{x})^m}$的展開式中x4的系數(shù)為-1×20=-20.
故答案為:-20.

點(diǎn)評 本題考查了定積分的計(jì)算,二項(xiàng)式定理,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù) f(x)=|2x+1-|2x-t|(t∈R).
 。á瘢┊(dāng) t=3時(shí),解關(guān)于x 的不等式 f(x)<1;
  (Ⅱ)?x∈R使得,求 f(x)≤-5,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖是把二進(jìn)制數(shù)11111(2)化為十進(jìn)制數(shù)的一個(gè)程序框圖,則輸出的S=( 。
 
A.15B.30C.31D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$1+\frac{1}{1+2}=\frac{4}{3}$,$1+\frac{1}{1+2}+\frac{1}{1+2+3}=\frac{3}{2}$,$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}=\frac{8}{5}$,…,若$1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+…+\frac{1}{1+2+3+…+n}=\frac{12}{7}$,則n=( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知曲線$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$,θ∈[0,2π)上一點(diǎn)P(x,y)到定點(diǎn)M(a,0),(a>0)的最小距離為$\frac{3}{4}$,則a=$\frac{11}{4}$或$\frac{\sqrt{21}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知點(diǎn)P是棱長為1的正方體ABCD-A1B1C1D1的底面A1B1C1D1上一點(diǎn)(包括邊界),則$\overrightarrow{PA}•\overrightarrow{PC}$的取值范圍是$[\frac{1}{2},1]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知A,B,C三點(diǎn)都在體積為$\frac{500π}{3}$的球O的表面上,若AB=4,∠ACB=30°,則球心O到平面ABC的距離為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知拋物線E:y2=4x,設(shè)A、B是拋物線E上分別位于x軸兩側(cè)的兩個(gè)動(dòng)點(diǎn),且$\overrightarrow{OA}$•$\overrightarrow{OB}$=$\frac{9}{4}$(其中O為坐標(biāo)原點(diǎn))
(Ⅰ)求證:直線AB必過定點(diǎn),并求出該定點(diǎn)Q的坐標(biāo);
(Ⅱ)過點(diǎn)Q作AB的垂線與拋物線交于G、D兩點(diǎn),求四邊形AGBD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在直角坐標(biāo)系中,直線l過定點(diǎn)(-1,0),且傾斜角為α(0<α<π),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=cosθ(ρcosθ+8).
(1)寫出l的參數(shù)方程和C的直角坐標(biāo)方程;
(2)若直線l與曲線C交于A,B兩點(diǎn),且$|AB|=8\sqrt{10}$,求α的值.

查看答案和解析>>

同步練習(xí)冊答案