已知函數(shù)f(x)=x2-5x-log2x+7,其零點(diǎn)的個(gè)數(shù)為( 。
A、0B、1C、2D、3
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:將問題轉(zhuǎn)化為函數(shù)y=x2-5x+7和y=
log
x
2
的交點(diǎn)個(gè)數(shù)問題,畫出函數(shù)的圖象,從而得到答案.
解答: 解:令f(x)=0,得到x2-5x+7=
log
x
2

畫出函數(shù)y=x2-5x+7和y=
log
x
2
的圖象,
如圖示:
,
由圖象得函數(shù)f(x)有2個(gè)零點(diǎn),
故選:C.
點(diǎn)評:本題考查了函數(shù)的零點(diǎn)問題,考查了數(shù)形結(jié)合思想,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如程序框圖所示已知集合A={x|框圖中輸出的x值},集合B={y|框圖中輸出的y值},當(dāng)x=1時(shí)A∩B=( 。
A、∅B、{3}
C、{1,3,5}D、{3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2分別是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點(diǎn),A為雙曲線的左頂點(diǎn),以F1,F(xiàn)2為為直徑的圓交雙曲線的某條漸近線于MN兩點(diǎn)(M在x軸上方,N在x軸下方),c為雙曲線的半焦距,O為坐標(biāo)原點(diǎn).則下列命題正確的是
 
(寫出所有正確命題的編號).
①|(zhì)OM|=|ON|=c;
②點(diǎn)N的坐標(biāo)為(a,b);
③∠MAN>90°;
④若∠MAN=120°,則雙曲線C的離心率為
21
3
;
⑤若∠MAN=120°,且△AMN的面積為2
3
,則雙曲線C的方程為
x2
3
-
y2
4
=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
kx+1,x≤0
lnx,x>0
,下列關(guān)于函數(shù)y=f[f(x)]+1的零點(diǎn)個(gè)數(shù)的判斷正確的是( 。
A、無論k為何值,均有2個(gè)零點(diǎn)
B、無論k為何值,均有4個(gè)零點(diǎn)
C、當(dāng)k>0時(shí),有3個(gè)零點(diǎn);當(dāng)k<0時(shí),有2個(gè)零點(diǎn)
D、當(dāng)k>0時(shí),有4個(gè)零點(diǎn);當(dāng)k<0時(shí),有1個(gè)零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x||x-2|<3},B={x|x2-2x+2m<0}.
(1)若實(shí)數(shù)m=-4,求A∩B;
(2)若A∪B=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=px2+qx+r(p≠0,p<r),滿足f(0)<0且f(-
q
2p
)>0,設(shè)△ABC的三個(gè)內(nèi)角分別為A、B、C,tanA,tanB為函數(shù)f(x)的兩個(gè)零點(diǎn),則△ABC一定是( 。
A、銳角三角形B、直角三角形
C、鈍角三角形D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
9
+
y2
4
=1和直線l:x-y-4=0,點(diǎn)P在直線l上,過點(diǎn)P作橢圓C的兩切線PA、PB,A、B為切點(diǎn),求證:當(dāng)點(diǎn)P在直線l上運(yùn)動時(shí),直線AB恒過一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(-27,45,-18),
a
=(-9,9,9).在y0z面上找一點(diǎn)B,使得
AB
a
,則點(diǎn)B的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i是虛數(shù)單位,則
1
21007
2
1+i
2014=( 。
A、iB、-iC、1D、-1

查看答案和解析>>

同步練習(xí)冊答案