【題目】已知向量a=(cosωx-sinωx,sinωx),b=(-cosωx-sinωx,2cosωx).設(shè)函數(shù)f(x)=a·b+λ(x∈R)的圖象關(guān)于直線x=π對(duì)稱,其中ω,λ為常數(shù),且ω∈.
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過(guò)點(diǎn),求函數(shù)f(x)在區(qū)間上的取值范圍
【答案】(1) ;(2) .
【解析】試題分析:
(1)整理函數(shù)的解析式可得: ,利用最小正周期公式可得函數(shù)的最小正周期為 ;
(2)化簡(jiǎn)三角函數(shù)的解析式,結(jié)合函數(shù)的定義域可得函數(shù)的取值范圍是 .
試題解析:
(1)因?yàn)閒(x)=sin2ωx-cos2ωx+2sinωx·cosωx+λ
=-cos2ωx+sin2ωx+λ
=2sin+λ.
由直線x=π是y=f(x)圖象的一條對(duì)稱軸,可得sin=±1,
所以2ωπ-=kπ+ (k∈Z),即ω=+ (k∈Z).
又ω∈,k∈Z,所以k=1,故ω=.
所以f(x)的最小正周期是.
(2)由y=f(x)的圖象過(guò)點(diǎn),得f=0,
即λ=-2sin=-2sin=-,即λ=-.
故f(x)=2sin-,
由0≤x≤,有-≤x-≤,
所以-≤sin≤1,得-1-≤2sinx--≤2-.
故函數(shù)f(x)在上的取值范圍為[-1-,2-].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐P-ABC中, ,O是AC的中點(diǎn),,,.
(1)證明:平面平面ABC;
(2)若, ,D是AB的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某單位甲、乙、丙三個(gè)部門(mén)共有員工60人,為調(diào)查他們的睡眠情況,通過(guò)分層抽樣獲得部分員工每天睡眼的時(shí)間,數(shù)據(jù)如下表(單位:小時(shí))
甲部門(mén) | 6 | 7 | 8 | |||
乙部門(mén) | 5.5 | 6 | 6.5 | 7 | 7.5 | 8 |
丙部門(mén) | 5 | 5.5 | 6 | 6.5 | 7 | 8.5 |
(1)求該單位乙部門(mén)的員工人數(shù)?
(2)若將每天睡眠時(shí)間不少于7小時(shí)視為睡眠充足,現(xiàn)從該單位任取1人,估計(jì)拍到的此人為睡眠充足者的概率;
(3)再?gòu)募撞块T(mén)和乙部門(mén)抽出的員工中,各隨機(jī)選取一人,甲部門(mén)選出的員工記為A,乙部門(mén)選出的員工記為B,假設(shè)所有員工睡眠的時(shí)間相互獨(dú)立,求A的睡眠時(shí)間不少于B的睡眼時(shí)間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法:
①函數(shù)的圖象和直線的公共點(diǎn)個(gè)數(shù)是,則的值可能是;
②若函數(shù)定義域?yàn)?/span>且滿足,則它的圖象關(guān)于軸對(duì)稱;
③函數(shù)的值域?yàn)?/span>;
④若函數(shù)在上有零點(diǎn),則實(shí)數(shù)的取值范圍是.
其中正確的序號(hào)是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】美國(guó)一貫推行強(qiáng)權(quán)政治,2018年3月22日,美國(guó)總統(tǒng)特朗普在白宮簽署了對(duì)中國(guó)輸美產(chǎn)品征收關(guān)稅的總統(tǒng)備忘錄,限制中國(guó)商品進(jìn)入美國(guó)市場(chǎng)。中國(guó)某企業(yè)計(jì)劃打入美國(guó)市場(chǎng),決定從A、B兩種產(chǎn)品中只選一種進(jìn)行投資生產(chǎn),已知投入生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬(wàn)元)
年固定成本 | 每件產(chǎn)品成本 | 每件產(chǎn)品銷售價(jià) | 每年最多可生產(chǎn)件數(shù) | |
A產(chǎn)品 | 40 | m | 15 | 200 |
B產(chǎn)品 | 60 | 10 | 22 | 150 |
其中固定成本與年生產(chǎn)的件數(shù)無(wú)關(guān),m是待定的常數(shù),其值由生產(chǎn)A產(chǎn)品的原材料決定,預(yù)計(jì),另外,年銷售件B產(chǎn)品時(shí)需交0.05萬(wàn)元的附件關(guān)稅,假設(shè)生產(chǎn)出來(lái)的產(chǎn)品都能在當(dāng)年銷售出去.
(1)求該廠分別投資生產(chǎn)A、B兩種產(chǎn)品的年利潤(rùn)與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)之間的函數(shù)關(guān)系,并求出其定義域;
(2)如何投資才可獲得最大年利潤(rùn)?請(qǐng)?jiān)O(shè)計(jì)出投資方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)且是定義域?yàn)?/span>R的奇函數(shù).
求k值;
若,試判斷函數(shù)單調(diào)性并求使不等式恒成立的t的取值范圍;
若,且在上的最小值為,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】針對(duì)國(guó)家提出的延遲退休方案,某機(jī)構(gòu)進(jìn)行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”、“保留”和“不支持”態(tài)度的人數(shù)如下表所示:
支持 | 保留 | 不支持 | |
歲以下 | |||
歲以上(含歲) |
(1)在所有參與調(diào)查的人中,用分層抽樣的方法抽取個(gè)人,已知從持“不支持”態(tài)度的人中抽取了人,求的值;
(2)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取人看成一個(gè)總體,從這人中任意選取人,求至少有一人年齡在歲以下的概率.
(3)在接受調(diào)查的人中,有人給這項(xiàng)活動(dòng)打出的分?jǐn)?shù)如下: , , , , , , , , , ,把這個(gè)人打出的分?jǐn)?shù)看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與總體平均數(shù)之差的絕對(duì)值超過(guò)概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年11月11日是石室中學(xué)周年校慶日,學(xué)校數(shù)學(xué)愛(ài)好者社團(tuán)組織“解題迎校慶,我愛(ài)”的活動(dòng).其中一題如下:已知數(shù)列,其中第一項(xiàng)是,接下來(lái)的兩項(xiàng)是,,再接下來(lái)的三項(xiàng)是,,,依此類推.若該數(shù)列前項(xiàng)和為,則求滿足,且是的倍數(shù)條件的整數(shù)的個(gè)數(shù)為( )
A. 10B. 12C. 21D. 60
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)點(diǎn)在圓上,直線上圓在點(diǎn)處的切線,過(guò)點(diǎn)作圓的切線與交于點(diǎn).
(Ⅰ)證明為定值,并求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)的直線與曲線分別交于和,且,求四邊形面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com