.(本小題滿分12分)數(shù)列的前項(xiàng)和為,
(Ⅰ)求數(shù)列的通項(xiàng); (Ⅱ)求數(shù)列的前項(xiàng)和
解:(Ⅰ),
,


數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,
當(dāng)時(shí),,
      ………………… 5分
(Ⅱ),………………………6分
當(dāng)時(shí),;………………………7分
當(dāng)時(shí),,…………①
,………………………②………………………9分
得:

.………………………12分
.………………………13分
也滿足上式,
.  ………14分
 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

..(本題滿分18分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分。
設(shè)函數(shù),數(shù)列滿足。
⑴求數(shù)列的通項(xiàng)公式;
⑵設(shè),若對(duì)恒成立,求實(shí)數(shù)的取值范圍;
⑶是否存在以為首項(xiàng),公比為的等比數(shù)列,,使得數(shù)列中每一項(xiàng)都是數(shù)列中不同的項(xiàng),若存在,求出所有滿足條件的數(shù)列的通項(xiàng)公式;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)等比數(shù)列中,對(duì)任意,時(shí)都有成等差,求公比的值
(2)設(shè)是等比數(shù)列的前項(xiàng)和,當(dāng)成等差時(shí),是否有一定也成等差數(shù)列?說明理由
(3)設(shè)等比數(shù)列的公比為,前項(xiàng)和為,是否存在正整數(shù),使成等差且也成等差,若存在,求出滿足的關(guān)系;若不存在,請(qǐng)說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分18分)
各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列滿足,數(shù)列滿足,數(shù)列的前項(xiàng)和為,求
(3)若數(shù)列,甲同學(xué)利用第(2)問中的,試圖確定的值是否可以等于2011?為此,他設(shè)計(jì)了一個(gè)程序(如圖),但乙同學(xué)認(rèn)為這個(gè)程序如果被執(zhí)行會(huì)是一個(gè)“死循環(huán)”(即程序會(huì)永遠(yuǎn)循環(huán)下去,而無法結(jié)束),你是否同意乙同學(xué)的觀點(diǎn)?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

、數(shù)列的通項(xiàng)為=,,其前項(xiàng)和為,則使>48成立的的最小值為(   )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知數(shù)列的前n項(xiàng)和為 (n∈N*),且.?dāng)?shù)列滿足,,,n=2,3,….
(Ⅰ)求數(shù)列  的通項(xiàng)公式;
(Ⅱ)求數(shù)列  的通項(xiàng)公式;
(Ⅲ)證明:對(duì)于 ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(10分)已知數(shù)列的前項(xiàng)和,
(1)求數(shù)列的通項(xiàng)公式;
(2)記,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列{}的前n項(xiàng)和=n2,{}為等比數(shù)列,且=(-)=
⑴求數(shù)列{}和{}的通項(xiàng)公式;
⑵求數(shù)列{}的前n項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等差數(shù)列中,是數(shù)列的前n項(xiàng)和,若,則最接近的整數(shù)是                     (   )
A.5B.4C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案