12.一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的( 。
A.外接球的體積為12$\sqrt{3}$ πB.外接球的表面積為4π
C.體積為$\sqrt{2}$D.表面積為$\sqrt{5}$+$\sqrt{2}$+1

分析 由三視圖得到幾何體為三棱錐,結(jié)合圖中數(shù)據(jù)計(jì)算體積,表面積外接球體積、表面積.

解答 解:由三視圖得到幾何體為三棱錐,如圖:體積為$\frac{1}{2}×2×1+\frac{1}{2}×2×\sqrt{2}+\frac{1}{2}×\sqrt{2}×\frac{\sqrt{10}}{2}×2$=1+$\sqrt{2}$$+\sqrt{5}$;體積為$\frac{1}{3}×\frac{1}{2}×\sqrt{2}×\sqrt{2}×\sqrt{2}=\frac{\sqrt{2}}{3}$;
故選:D.

點(diǎn)評(píng) 本題考查了由幾何體的三視圖求幾何體的體積表面積等;關(guān)鍵是正確還原幾何體.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知在數(shù)列{an}中,${a_1}=\frac{3}{2},{a_{n+1}}=a_n^2-2{a_n}+2$.,n∈N*
(1)求證:1<an+1<an<2;
(2)求證:$\frac{6}{{{2^{n-1}}+3}}≤{a_n}≤\frac{{{2^{n-1}}+2}}{{{2^{n-1}}+1}}$;
(3)求證:n<sn<n+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)不等式|x-2|<a的解集為A,且$\frac{3}{2}$∈A,$\frac{1}{2}$∉A,則a的取值范圍是( 。
A.$\frac{1}{2}$<a<$\frac{3}{2}$B.$\frac{1}{2}$≤a<$\frac{3}{2}$C.$\frac{1}{2}$<a≤$\frac{3}{2}$D.$\frac{1}{2}$≤a≤$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知圓C的圓心為(-1,-3),且它與x軸相切.
(1)求圓的方程;
(2)若圓C被直線l:y=kx截得的弦長(zhǎng)為$2\sqrt{7}$,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.6人分別擔(dān)任六種不同工作,已知甲不能擔(dān)任第一個(gè)工作,則任意分工時(shí),乙沒(méi)有擔(dān)任第二項(xiàng)工作的概率為$\frac{21}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.$6+4\sqrt{2}+2\sqrt{6}$B.$4+6\sqrt{2}+2\sqrt{5}$C.$4+2\sqrt{5}+2\sqrt{6}$D.$4+6\sqrt{2}+2\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如圖,空間四邊形OABC中,M、N分別是對(duì)邊OA、BC的中點(diǎn),點(diǎn)G在線段MN上,分$\overrightarrow{MN}$所成的定比為2,$\overrightarrow{OG}=x\overrightarrow{OA}+y\overrightarrow{OB}+z\overrightarrow{OC}$,則x、y、z的值分別為$\frac{1}{6}$,$\frac{1}{3}$,$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=|x+1|+|x-5|的最小值為m
(1)求m的值;
(2)若a,b,c為正實(shí)數(shù),且a+b+c=m,求證:a2+b2+c2≥12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在△ABC中若sin2A+sin2B=sin2C-$\sqrt{2}$sinAsinB,則sin2Atan2B最大值是3-2$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案