3.設(shè)不等式|x-2|<a的解集為A,且$\frac{3}{2}$∈A,$\frac{1}{2}$∉A,則a的取值范圍是(  )
A.$\frac{1}{2}$<a<$\frac{3}{2}$B.$\frac{1}{2}$≤a<$\frac{3}{2}$C.$\frac{1}{2}$<a≤$\frac{3}{2}$D.$\frac{1}{2}$≤a≤$\frac{3}{2}$

分析 求出集合A,列出不等式組得出a的范圍.

解答 解:∵A為非空集合,∴a>0,
由|x-2|<a得-a<x-2<a,即2-a<x<2+a,
∴A=(2-a,2+a),
∵$\frac{3}{2}$∈A,$\frac{1}{2}$∉A,
∴$\left\{\begin{array}{l}{\frac{1}{2}≤2-a}\\{\frac{3}{2}>2-a}\\{\frac{3}{2}<2+a}\end{array}\right.$,解得$\frac{1}{2}<a≤\frac{3}{2}$.
故選C.

點評 本題考查了不等式的解法,元素與集合的關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an}中,an=-3n+4,等比數(shù)列{bn}的公比q滿足q=an-an-1(n≥2)且b1=a1,則滿足$\frac{1}{{|{b_1}|}}+\frac{1}{{|{b_2}|}}+…+\frac{1}{{|{b_n}|}}<\frac{121}{81}$成立的n的最大值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知R為實數(shù)集,集合A={x|x2-2x≥0},B={x|x>1},則(∁RA)∩B( 。
A.(0,1)B.(0,1]C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若直線y=2x上存在點(x,y)滿足約束條件$\left\{\begin{array}{l}{x+y+6>0}\\{2x-y+8≥0}\\{x≤m}\end{array}\right.$,則實數(shù)m的取值范圍是(  )
A.(-2,+∞)B.[-2,+∞)C.(-∞,-2)D.(-∞,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.定義在R上的奇函數(shù)f(x)滿足f(x-2)=-f(x),且在[0,1]上是增函數(shù),則f($\frac{1}{4}$),f(-$\frac{1}{4}$),f($\frac{3}{2}$)的大小關(guān)系是$f(-\frac{1}{4})$<$f(\frac{1}{4})$<$f(\frac{3}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)$y=sin(x+\frac{π}{4})$在閉區(qū)間( 。┥蠟樵龊瘮(shù).
A.$[-\frac{3}{4}π,\frac{π}{4}]$B.[-π,0]C.$[-\frac{π}{4},\frac{3}{4}π]$D.$[-\frac{π}{2},\frac{π}{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知向量$\overrightarrow{a}$=(sinx,-1),$\overrightarrow$=$({\sqrt{3}cosx,-\frac{1}{2}})$.函數(shù)f(x)=($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{a}$-2.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)已知a,b,c分別為△ABC內(nèi)角A,B,C 的對邊,其中A為銳角,a=2$\sqrt{3}$,c=4,且f(A)=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.一個幾何體的三視圖如圖所示,則這個幾何體的(  )
A.外接球的體積為12$\sqrt{3}$ πB.外接球的表面積為4π
C.體積為$\sqrt{2}$D.表面積為$\sqrt{5}$+$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.執(zhí)行如圖所示的程序框圖,如果輸入的m=15,n=12,則輸出的n是( 。
A.15B.12C.3D.180

查看答案和解析>>

同步練習(xí)冊答案