在極坐標(biāo)系中,如果一個圓的方程p=4cosθ+6sinθ,那么過圓心且與極軸平行的直線方程是( )
A.psinθ=3
B.psinθ=-3
C.pcosθ=2
D.pcosθ=-2
【答案】分析:先在極坐標(biāo)方程p=4cosθ+6sinθ的兩邊同乘以ρ,再利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進行代換即得直角坐標(biāo)系,再利用直角坐標(biāo)方程求解即可.
解答:解:將方程p=4cosθ+6sinθ兩邊都乘以p得:p2=4ρcosθ+6ρsinθ,
化成直角坐標(biāo)方程為
x2+y2-4x-6y=0.圓心的坐標(biāo)為(2,3).
過圓心且與極軸平行的直線方程是:
y=3,其極坐標(biāo)方程為:psinθ=3.
故選A.
點評:本題考查點的極坐標(biāo)和直角坐標(biāo)的互化,能在極坐標(biāo)系中用極坐標(biāo)刻畫點的位置,體會在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫點的位置的區(qū)別,能進行極坐標(biāo)和直角坐標(biāo)的互化.