A. | $\frac{1}{{e}_{1}}$+$\frac{1}{{e}_{2}}$=2 | B. | $\frac{1}{{e}_{1}}$-$\frac{1}{{e}_{2}}$=2 | C. | e1+e2=2 | D. | e2-e1=2 |
分析 設橢圓和雙曲線的半焦距為c,|PF1|=m,|PF2|=n,(m>n),由條件可得m=10,n=2c,再由橢圓和雙曲線的定義可得10+n=2a1,10-n=2a2,則n=a1-a2,計算可得$\frac{1}{{e}_{1}}$-$\frac{1}{{e}_{2}}$=2.
解答 解:如圖,設橢圓和雙曲線的半焦距為c,|PF1|=m,|PF2|=n,(m>n),
由于△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,
即有m=10,n=2c,
由橢圓的定義可得10+n=2a1,
由雙曲線的定義可得10-n=2a2,
則n=a1-a2,
∵${e}_{1}=\frac{c}{{a}_{1}}$,${e}_{2}=\frac{c}{{a}_{2}}$,
∴$\frac{1}{{e}_{1}}-\frac{1}{{e}_{2}}=\frac{{a}_{1}}{c}-\frac{{a}_{2}}{c}=\frac{{a}_{1}-{a}_{2}}{c}=\frac{n}{c}=\frac{2c}{c}=2$.
故選:B.
點評 本題考查橢圓和雙曲線的定義和性質,考查離心率的求法,關鍵是圓錐曲線定義的應用,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{6}$π | B. | $\frac{3}{2}$π | C. | $\frac{1}{6}$π | D. | $\frac{\sqrt{3}}{3}$π |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (25,625) | B. | (25,650) | C. | (26,625) | D. | (26,650) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
x | 0 | 1 | 3 | 4 |
y | 2.2 | 4.3 | 4.8 | 6.7 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $(\frac{1}{2},\sqrt{2})$ | B. | $(\sqrt{2},\sqrt{5}]$ | C. | $(1,\sqrt{2})$ | D. | $(\sqrt{2},\sqrt{5})$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com