甲乙丙3位同學(xué)選修課程,從4門課程中選。甲選修2門,乙丙各選修3門,則不同的選修方案共有


  1. A.
    36種
  2. B.
    48種
  3. C.
    96種
  4. D.
    1 92種
C
試題分析:設(shè)4門課程分別為1,2,3,4,甲選修2門,可有1,2;1,3;1,4;2,3;2,4;3,4共6種情況,同理乙,丙均可有1,2,3;1,2,4;2,3,4;1,3,4共4種情況,∴不同的選修方案共有6×4×4=96種,故選C.
考點:分步計數(shù)原理
點評:本題需注意方案不分次序,即a,b和b,a是同一種方案,用列舉法找到相應(yīng)的組合即可.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

高二下學(xué)期,學(xué)校計劃為同學(xué)們提供A.B.C.D四門方向不同的數(shù)學(xué)選修課,現(xiàn)在甲、乙、丙三位同學(xué)要從中任選一門學(xué)習(xí)(受條件限制,不允許多選,也不允許不選).
(I)求3位同學(xué)中,選擇3門不同方向選修的概率;
(II)求恰有2門選修沒有被3位同學(xué)選中的概率;
(III)求3位同學(xué)中,選擇A選修課人數(shù)ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

高二下學(xué)期,學(xué)校計劃為同學(xué)們提供A、B、C、D四門方向不同的數(shù)學(xué)選修課,現(xiàn)在甲、乙、丙三位同學(xué)要從中任選一門學(xué)習(xí)(受條件限制,不允許多選,也不允許不選).
(I)求3位同學(xué)中,選擇3門不同方向選修的概率;
(II)求恰有2門選修沒有被3位同學(xué)選中的概率;
(III)求3位同學(xué)中,至少有2個選擇A選修課的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

高二下學(xué)期,學(xué)校計劃為同學(xué)們提供A.B.C.D四門方向不同的數(shù)學(xué)選修課,現(xiàn)在甲、乙、丙三位同學(xué)要從中任選一門學(xué)習(xí)(受條件限制,不允許多選,也不允許不選).
(I)求3位同學(xué)中,選擇3門不同方向選修的概率;
(II)求恰有2門選修沒有被3位同學(xué)選中的概率;
(III)求3位同學(xué)中,選擇A選修課人數(shù)ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南模擬 題型:解答題

高二下學(xué)期,學(xué)校計劃為同學(xué)們提供A、B、C、D四門方向不同的數(shù)學(xué)選修課,現(xiàn)在甲、乙、丙三位同學(xué)要從中任選一門學(xué)習(xí)(受條件限制,不允許多選,也不允許不選).
(I)求3位同學(xué)中,選擇3門不同方向選修的概率;
(II)求恰有2門選修沒有被3位同學(xué)選中的概率;
(III)求3位同學(xué)中,至少有2個選擇A選修課的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年河南省新鄉(xiāng)、許昌、平頂山高考數(shù)學(xué)三模試卷(理科)(必修+選修2)(解析版) 題型:解答題

高二下學(xué)期,學(xué)校計劃為同學(xué)們提供A.B.C.D四門方向不同的數(shù)學(xué)選修課,現(xiàn)在甲、乙、丙三位同學(xué)要從中任選一門學(xué)習(xí)(受條件限制,不允許多選,也不允許不選).
(I)求3位同學(xué)中,選擇3門不同方向選修的概率;
(II)求恰有2門選修沒有被3位同學(xué)選中的概率;
(III)求3位同學(xué)中,選擇A選修課人數(shù)ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案