已知函數(shù) 則下列關(guān)于函數(shù)的零點個數(shù)的判斷正確的是(   )
A.當時,有3個零點;當時,有2個零點
B.當時,有4個零點;當時,有1個零點
C.無論為何值,均有2個零點
D.無論為何值,均有4個零點
B

試題分析:由得:.當時,由得:,.所以
;此時,每一段都是單調(diào)遞增的,且,,.由此可作出其簡圖如下圖所示(實線部分):

由圖可知,當時,該函數(shù)有4個零點.
時,時,恒有.所以.
顯然、上單調(diào)遞減,在上單調(diào)遞增. .作出其簡圖如下圖所示(實線部分):

由圖可知,當時,該函數(shù)有1個零點.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點,函數(shù)的圖象上的動點軸上的射影為,且點在點的左側(cè).設(shè),的面積為.

(Ⅰ)求函數(shù)的解析式及的取值范圍;
(Ⅱ)求函數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的定義域為,且同時滿足以下三個條件:①;②對任意的,都有;③當時總有.
(1)試求的值;
(2)求的最大值;
(3)證明:當時,恒有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對于函數(shù)若存在,使得成立,則稱的不動點.
已知
(1)當時,求函數(shù)的不動點;
(2)若對任意實數(shù),函數(shù)恒有兩個相異的不動點,求的取值范圍;
(3)在(2)的條件下,若圖象上兩點的橫坐標是函數(shù)的不動點,且、兩點關(guān)于直線對稱,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在股票市場上,投資者常參考股價(每一股的價格)的某條平滑均線的變化情況來決定買入或賣出股票。股民老張在研究股票的走勢圖時,發(fā)現(xiàn)一只股票的均線近期走得很有特點:如果按如圖所示的方式建立平面直角坐標系,則股價(元)和時間的關(guān)系在段可近似地用解析式來描述,從點走到今天的點,是震蕩筑底階段,而今天出現(xiàn)了明顯的筑底結(jié)束的標志,且點和點正好關(guān)于直線對稱。老張預(yù)計這只股票未來的走勢如圖中虛線所示,這里段與段關(guān)于直線對稱,段是股價延續(xù)段的趨勢(規(guī)律)走到這波上升行

情的最高點,F(xiàn)在老張決定取點,點,點來確定解析式中的常數(shù),,,并且求得
(Ⅰ)請你幫老張算出,,,并回答股價什么時候見頂(即求點的橫坐標)
(Ⅱ)老張如能在今天以點處的價格買入該股票3000股,到見頂處點的價格全部賣出,不計其它費用,這次操作他能賺多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)在區(qū)間上有最大值4,最小值1,
(Ⅰ)求的值。
(Ⅱ)設(shè)不等式在區(qū)間上恒成立,求實數(shù)k的取值范圍?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一企業(yè)生產(chǎn)的某產(chǎn)品在不做電視廣告的前提下,每天銷售量為b噸.經(jīng)市場調(diào)查后得到如下規(guī)律:若對產(chǎn)品進行電視廣告的宣傳,每天的銷售量S(噸)與電視廣告每天的播放量n(次)的關(guān)系可用如圖所示的程序框圖來體現(xiàn).

(1)試寫出該產(chǎn)品每天的銷售量S(噸)關(guān)于電視廣告每天的播放量n(次)的函數(shù)關(guān)系式;
(2)要使該產(chǎn)品每天的銷售量比不做電視廣告時的銷售量至少增加90%,則每天電視廣告的播放量至少需多少次?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

某社區(qū)要召開群眾代表大會,規(guī)定各小區(qū)每10人推選一名代表,當各小區(qū)人數(shù)除以10的余數(shù)不小于5時再增選一名代表.那么,各小區(qū)可推選代表人數(shù)y與該小區(qū)人數(shù)x之間的函數(shù)關(guān)系用取整函數(shù)y=[x]([x]表示不大于x的最大整數(shù))可以表示為 (  )
A.y=[]B.y=[]C.y=[]D.y=[]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

,則的表達式為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案