【題目】在古代,直角三角形中較短的直角邊稱為“勾”,較長的直角邊稱為“股”,斜邊稱為“弦”.三國時期吳國數(shù)學(xué)家趙爽用“弦圖”( 如圖) 證明了勾股定理,證明方法敘述為:“按弦圖,又可以勾股相乘為朱實二,倍之為朱實四,以勾股之差自相乘為中黃實,加差實,亦成弦實.”這里的“實”可以理解為面積.這個證明過程體現(xiàn)的是這樣一個等量關(guān)系:“兩條直角邊的乘積是兩個全等直角三角形的面積的和(朱實二 ),4個全等的直角三角形的面積的和(朱實四) 加上中間小正方形的面積(黃實) 等于大正方形的面積(弦實)”. 若弦圖中“弦實”為16,“朱實一”為,現(xiàn)隨機(jī)向弦圖內(nèi)投入一粒黃豆(大小忽略不計),則其落入小正方形內(nèi)的概率為( )
A. B. C. D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點O是四邊形內(nèi)一點,判斷結(jié)論:“若,則該四邊形必是矩形,且O為四邊形的中心”是否正確,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知長度為的線段的兩個端點、分別在軸和軸上運動,動點滿足,設(shè)動點的軌跡為曲線.
(1)求曲線的方程;
(2)過點且斜率不為零的直線與曲線交于兩點、,在軸上是否存在定點,使得直線與的斜率之積為常數(shù).若存在,求出定點的坐標(biāo)以及此常數(shù);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線y=x2+mx–2與x軸交于A,B兩點,點C的坐標(biāo)為(0,1).當(dāng)m變化時,解答下列問題:
(1)能否出現(xiàn)AC⊥BC的情況?說明理由;
(2)證明過A,B,C三點的圓在y軸上截得的弦長為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(題文)已知橢圓的離心率為,過點的直線交橢圓與兩點,,且當(dāng)直線垂直于軸時,.
(Ⅰ)求橢圓的方程;
(Ⅱ)若,求弦長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】各項均為正數(shù)的數(shù)列的前項和為,且滿足,,.各項均為正數(shù)的等比數(shù)列滿足,.
(1)求數(shù)列、的通項公式;
(2)若,數(shù)列的前項和.
①求;
②若對任意,,均有恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2016高考新課標(biāo)II,理15)有三張卡片,分別寫有1和2,1和3,2和3.甲,乙,丙三人各取走一張卡片,甲看了乙的卡片后說:“我與乙的卡片上相同的數(shù)字不是2”,乙看了丙的卡片后說:“我與丙的卡片上相同的數(shù)字不是1”,丙說:“我的卡片上的數(shù)字之和不是5”,則甲的卡片上的數(shù)字是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I) 當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(II) 當(dāng)時,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,圓的方程為,直線的極坐標(biāo)方程為.
(I )寫出的極坐標(biāo)方程和的平面直角坐標(biāo)方程;
(Ⅱ) 若直線的極坐標(biāo)方程為,設(shè)與的交點為與的交點為求的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com