在數(shù)列{an}中,a1=14,3an=3an+1+2,則使anan+2<0成立的n值是( 。
A、19B、20C、21D、22
考點(diǎn):數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:由已知條件得到數(shù)列{an}是首項(xiàng)a1=14,公差為an-an+1=-
2
3
的等差數(shù)列,從而推導(dǎo)出an=
1
3
(44-2n),從而an•an+2=
1
9
(44-2n)(40-2n),由此能求出使anan+2<0成立的n值.
解答: 解:由已知3an=3an+1+2,
得an+1-an=d=-
2
3
,
an=14+(n-1)(-
2
3
)=
1
3
(44-2n),
an•an+2=
1
9
(44-2n)(40-2n)<0,
整理,得(n-20)(n-22)<0,
解得20<n<22,
因?yàn)閚∈N*,所以n=21.
故選:C.
點(diǎn)評(píng):本題考查使anan+2<0成立的n值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x+2ax+b,且f(1)=
5
2
,f(2)=
17
4

(1)求a,b;
(2)判斷f(x)的奇偶性;
(3)試判斷函數(shù)在(-∞,0]上的單調(diào)性,并證明;
(4)求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足
x≥0
y≥0
x+y≤1
,則z=x-y的最大值是( 。
A、-1B、1C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2-2ax+3,
(1)若函數(shù)f(x)在區(qū)間[-2,3]是單調(diào)函數(shù),求實(shí)數(shù)a的范圍;
(2)求函數(shù)f(x)在區(qū)間[-2,3]的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y為正實(shí)數(shù),a=
x2+xy+y2
,b=p
xy
,c=x+y.
(1)試比較a、c的大;
(2)若p=1,試證明:以a,b,c為三邊長(zhǎng)一定能構(gòu)成三角形;
(3)若對(duì)任意的正實(shí)數(shù)x,y,不等式a+b>c恒成立,試求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直二面角α-PQ-β,A∈PQ,B∈α,C∈β,CA=CB,∠BAP=45°,直線CA和平面α所成角為30°,那么二面角B-AC-P的正切值為(  )
A、2
B、3
C、
1
2
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了測(cè)試某批燈光的使用壽命,從中抽取了20個(gè)燈泡進(jìn)行試驗(yàn),記錄如下:(以小時(shí)為單位)
171  159、168、166、170、158、169、166、165、162
168  163、172、161、162、167、164、165、164、167
(1)列出樣本頻率分布表;
(2)畫出頻率分布直方圖;
(3)從頻率分布的直方圖中,估計(jì)這些燈泡的使用壽命.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:y2-
x2
3
=1,過點(diǎn)P(2,1)作直線l交雙曲線C于A、B兩點(diǎn).若P恰為弦AB的中點(diǎn),則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(
x
+
2
x
n的展開式中第5項(xiàng)的系數(shù)與第3項(xiàng)的系數(shù)比為56:3,則n=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案