已知雙曲線C:y2-
x2
3
=1,過點(diǎn)P(2,1)作直線l交雙曲線C于A、B兩點(diǎn).若P恰為弦AB的中點(diǎn),則直線l的方程為
 
考點(diǎn):直線與圓錐曲線的關(guān)系
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)A(x1,y1),B(x2,y2),則x1+x2=4,y1+y2=2,把A(x1,y1),B(x2,y2)代入雙曲線C:y2-
x2
3
=1,利用點(diǎn)差法求解.
解答: 解:設(shè)A(x1,y1),B(x2,y2),
∵P(2,1)恰為弦AB的中點(diǎn),
∴x1+x2=4,y1+y2=2,
把A(x1,y1),B(x2,y2)代入雙曲線C:y2-
x2
3
=1,
3y12-x12=3
3y22-x22=3

兩式相減,得:3(y1+y2)(y1-y2)-(x1+x2)(x1-x2)=0,
∴6(y1-y2)-4(x1-x2)=0,
∴k=
y1-y2
x1-x2
=
2
3
,
∴直線l的方程為y-1=
2
3
(x-2),
整理,得2x-3y-1=0.
故答案為:2x-3y-1=0.
點(diǎn)評(píng):本題考查直線方程的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意點(diǎn)差法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,滿足a2=5,a4=13.?dāng)?shù)列{bn}的前n項(xiàng)和是Tn,且Tn+bn=3.
(1)求數(shù)列{an}及數(shù)列{bn}的通項(xiàng)公式;
(2)若cn=an•bn,求數(shù)列{cn}中的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=14,3an=3an+1+2,則使anan+2<0成立的n值是(  )
A、19B、20C、21D、22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若θ為三角形的一個(gè)內(nèi)角,且sinθ+cosθ=
1
5
,則曲線 x2sinθ+y2cosθ=1是( 。
A、焦點(diǎn)在x軸上的雙曲線
B、焦點(diǎn)在y軸上的雙曲線
C、焦點(diǎn)在x軸上的橢圓
D、焦點(diǎn)在y軸上的橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)正方體圖形中,A,B為正方體的兩個(gè)頂點(diǎn),M,N,P分別為其所在棱的中點(diǎn),則能得出AB∥平面MNP的圖形個(gè)數(shù)是(  )
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)過點(diǎn)P(1,
3
2
)
,離心率e=
1
2
,A為橢圓C1上一點(diǎn),B為拋物線y2=
3
2
x上一點(diǎn),且A為線段OB的中點(diǎn).
(1)求橢圓C1的方程;
(2)求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
cosx,-π≤x<0
sinx,0≤x≤π
,若f(x)=
1
2
,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)f(x)中,在(0,+∞)上為增函數(shù)的是( 。
A、f(x)=
1
x
B、f(x)=(x-1)2
C、f(x)=lnx
D、f(x)=(
1
2
)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l方程為:2x-y+1=0,直線m過點(diǎn)(1,2),
(1)若l∥m,求直線m的方程;
(2)若直線m的傾斜角是l的傾斜角的兩倍,求直線m的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案