已知等差數(shù)列{an}中,Sn是前n項(xiàng)和,若S18>0,且S19<0,則當(dāng)Sn最大時(shí),n的值為( 。
分析:根據(jù)所給的等差數(shù)列的S18>0,且S19<0,根據(jù)等差數(shù)列的前n項(xiàng)和公式,看出第十項(xiàng)小于0,第十項(xiàng)和第九項(xiàng)的和大于0,得到第九項(xiàng)大于0,這樣前9項(xiàng)的和最大.
解答:解:∵等差數(shù)列{an}中,S18>0,且S19<0
即S18=9(a10+a9>0   S19=19a10<0
∴a10+a9>0,a10<0,
∴a9>0,
∴數(shù)列的前9項(xiàng)和最大
故選C
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì)和前n項(xiàng)和,本題解題的關(guān)鍵是看出所給的數(shù)列的項(xiàng)的正負(fù),本題是一個(gè)基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿(mǎn)足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿(mǎn)足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿(mǎn)足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請(qǐng)根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫(xiě)出解答過(guò)程).

查看答案和解析>>

同步練習(xí)冊(cè)答案