精英家教網 > 高中數學 > 題目詳情

已知M是△ABC內的一點,且,∠BAC=30°則△MBC、△MCA和△MAB的面積分別為;則的最小值為

[  ]

A.20

B.19

C.16

D.18

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知M是△ABC內的一點,且
AB
AC
=2
3
,∠BAC=30°,若△MBC,△MCA和△MAB的面積分別為
1
2
,x,y,則
1
x
+
4
y
的最小值是( 。
A、20B、18C、16D、9

查看答案和解析>>

科目:高中數學 來源: 題型:

已知M是△ABC內的一點(不含邊界),且
AB
AC
=2
3
,∠BAC=30°,若△MBC,△MCA和△MAB的面積分別為x,y,z.
(1)x+y+z=
 
;
(2)定義f(x,y,z)=
1
x
+
4
y
+
9
z
,則f(x,y,z)的最小值是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知M是△ABC內的一點,且
AB
AC
=2
3
,∠BAC=30°,若△MBC,△MCA,△MAB的面積分別為
1
2
,x,y,則
1
x
+
4
y
的最小值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知M是△ABC內的一點,且
AB
AC
=2
3
,∠BAC=30°.定義:f(M)=(x,y,z),其中x,y,z分別為△MBC,△MCA,△MAB的面積,若f(M)=(x,y,
1
2
),則
1
2x
+
2
y
的最小值為
9
9
,此時f(M)=(
(
1
6
,
1
3
1
2
)
(
1
6
,
1
3
1
2
)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知M是△ABC內的一點(不含邊界),且
AB
.
AC
=2
3
∠BAC=30°
,若△MBC,△MCA和△MAB的面積分別為x,y,z,則
1
x+y
+
4
z
的最小值是
9
9

查看答案和解析>>

同步練習冊答案