從邊長2a的正方形鐵片的四個(gè)角各截一個(gè)邊長為x的正方形,然后折成一個(gè)無蓋的長方體盒子,要求長方體的高度x與底面正方形邊長的比不超過正常數(shù)t.

   (1)把鐵盒的容積V表示為x的函數(shù),并指出其定義域;

   (2)x為何值時(shí),容積V有最大值.

            

(1)  定義域?yàn)?sub>。

(2)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從邊長為2a的正方形鐵片的四個(gè)角各截去一個(gè)邊為x的正方形,再將四邊向上折起,做成一個(gè)無蓋的長方形鐵盒,要求長方體的高度與底面邊的比值不超過常數(shù)t(t>0).試問當(dāng)x取何值時(shí),容量V有最大值.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)從邊長2a的正方形鐵片的四個(gè)角各截一個(gè)邊長為x的正方形,然后折成一個(gè)無蓋的長方體盒子,要求長方體的高度x與底面正方形邊長的比不超過正常數(shù)t.
(1)把鐵盒的容積V表示為x的函數(shù),并指出其定義域;
(2)x為何值時(shí),容積V有最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010河南省唐河三高高二下學(xué)期期末模擬文科數(shù)學(xué)卷 題型:解答題

從邊長2a的正方形鐵片的四個(gè)角各截一個(gè)邊長為x的正方形,然后折成一個(gè)無蓋的長方體盒子,要求長方體的高度x與底面正方形邊長的比不超過正常數(shù)t.

   (1)把鐵盒的容積V表示為x的函數(shù),并指出其定義域;

   (2)x為何值時(shí),容積V有最大值.

         

         

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從邊長為2a的正方形鐵片的四個(gè)角各截去一個(gè)邊長為x的正方形,再將四邊向上折起,做成一個(gè)無蓋長方體鐵盒,要求長方體的高度與底面邊長的比值不超過常數(shù)tt>0).試問當(dāng)x取何值時(shí),容積V有最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從邊長為2a的正方形鐵片的四個(gè)角各截去一個(gè)邊長為x的正方形,再將四邊向上折起,做成一個(gè)無蓋長方體鐵盒,要求長方體的高度與底面邊長的比值不超過常數(shù)t(t>0).試問當(dāng)x取何值時(shí),容積V有最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案