【題目】已知函數(shù).
(Ⅰ)若曲線在點處的切線與直線垂直,求的值;
(Ⅱ)若函數(shù)存在極值點,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】試題分析:本題主要考查導數(shù)的運算、利用導數(shù)判斷函數(shù)的單調(diào)性、利用導數(shù)求函數(shù)的極值等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,先對求導,將代入中,即得到切線的斜率,而兩直線垂直,則兩個斜率相乘為-1,解出a的值;第二問,先對求導,由于導數(shù)中有參數(shù)a,則討論和兩種情況,由于的解集為增區(qū)間, 的解集為減區(qū)間,計算單調(diào)區(qū)間,利用函數(shù)的單調(diào)性判斷極值點的位置,令極值點的橫坐標在之間,解不等式,解出a的取值范圍.
試題解析:(Ⅰ)由于, (2分)
又 . (4分)
(Ⅱ),
①當時, ,函數(shù)在上單調(diào)遞增,無極值; (6分)
②當時,令即,
,
時,函數(shù)單調(diào)遞增; 時,函數(shù)單調(diào)遞減, (8分)
故是的極大值點.依題意: , (10分)
解得: ,綜上所述, 的取值范圍為. (12分)
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=mex﹣x﹣1(其中e為自然對數(shù)的底數(shù),),若f(x)=0有兩根x1 , x2且x1<x2 , 則函數(shù)y=(e ﹣e )( ﹣m)的值域為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨機抽取一個年份,對西安市該年4月份的天氣情況進行統(tǒng)計,結果如下:
(1)在4月份任取一天,估計西安市在該天不下雨的概率;
(2)西安市某學校擬從4月份的一個晴天開始舉行連續(xù)2天的運動會,估計運動會期間不下雨的概率.
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
天氣 | 晴 | 雨 | 陰 | 陰 | 陰 | 雨 | 陰 | 晴 | 晴 | 晴 | 陰 | 晴 | 晴 | 晴 | 晴 |
日期 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
天氣 | 晴 | 陰 | 雨 | 陰 | 陰 | 晴 | 陰 | 晴 | 晴 | 晴 | 陰 | 晴 | 晴 | 晴 | 雨 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某海濱浴場每年夏季每天的海浪高度y(米)是時間x(0≤x≤24,單位:小時)的函數(shù),記作y=f(x),下表是每年夏季每天某些時刻的浪高數(shù)據(jù):
x(時) | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y(米) | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 |
(1)經(jīng)觀察發(fā)現(xiàn)可以用三角函數(shù)y=Acosωx+b對這些數(shù)據(jù)進行擬合,求函數(shù)f(x)的表達式;
(2)浴場規(guī)定,每天白天當海浪高度高于1.25米時,才對沖浪愛好者開放,求沖浪者每天白天可以在哪個時段到該浴場進行沖浪運動?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從1開始的自然數(shù)按如圖所示的規(guī)則排列,現(xiàn)有一個三角形框架在圖中上下或左右移動,使每次恰有九個數(shù)在此三角形內(nèi),則這九個數(shù)的和可以為( )
A.2097 B.2112 C.2012 D.2090
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】通過隨機詢問110名性別不同的大學生是否愛好某項運動,得到如下的列聯(lián)表:
由算得, .
P(K2≥k0) | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
則參照附表,得到的正確結論應是( )
A. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關”
B. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關”
C. 有99%以上的把握認為“愛好該項運動與性別有關”
D. 有99%以上的把握認為“愛好該項運動與性別無關”
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知復數(shù)Z1 , Z2在復平面內(nèi)對應的點分別為A(﹣2,1),B(a,3).
(1)若|Z1﹣Z2|= ,求a的值.
(2)復數(shù)z=Z1Z2對應的點在二、四象限的角平分線上,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com