【題目】已知函數(shù)f(α)=
(1)化簡(jiǎn)f(α);
(2)若f(α)= <α<0,求sinαcosα,sinα﹣cosα的值.
【答案】
(1)解:f(α)= = + =sinα+cosα= sin(α+ )
(2)解:由 ,平方可得 ,
即 ,∴sinαcosα=﹣ ,∵(sinα﹣cosα)2=1﹣2sinαcosα= ,
又 ,所以sinα<0,cosα>0,所以sinα﹣cosα<0,∴sinα﹣cosα=﹣
【解析】(1)利用誘導(dǎo)公式化簡(jiǎn)三角函數(shù)式f(α)的解析式,可得結(jié)果.(2)利用同角三角函數(shù)的基本關(guān)系求得 sinαcosα 的值,結(jié)合 sinα與cosα 的符號(hào),可得(sinα﹣cosα)2的值,可得sinα﹣cosα的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐 的底面為直角梯形, , , , , 底面 , 為 的中點(diǎn).
(Ⅰ)求證:平面 平面
(Ⅱ)求直線 與平面 所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),且偶函數(shù)的定義域?yàn)?/span>,且當(dāng)時(shí), .若存在實(shí)數(shù),使得成立,則實(shí)數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中, ,四邊形是邊長(zhǎng)為的正方形,平面平面,若, 分別是的中點(diǎn).
(1)求證: 平面;
(2)求證:平面平面;
(3)求幾何體的體和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中, 底面,且為等邊三角形, , 為的中點(diǎn).
(1)求證:直線平面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx.
(1)設(shè)h(x)為偶函數(shù),當(dāng)x<0時(shí),h(x)=f(﹣x)+2x,求曲線y=h(x)在點(diǎn)(1,﹣2)處的切線方程;
(2)設(shè)g(x)=f(x)﹣mx,求函數(shù)g(x)的極值;
(3)若存在x0>1,當(dāng)x∈(1,x0)時(shí),恒有f(x)> 成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有以下判斷: ①f(x)= 與g(x)= 表示同一函數(shù);
②函數(shù)y=f(x)的圖象與直線x=1的交點(diǎn)最多有1個(gè);
③f(x)=x2﹣2x+1與g(t)=t2﹣2t+1是同一函數(shù);
④若f(x)=|x﹣1|﹣|x|,則f(f( ))=0.
其中正確判斷的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù) 在時(shí)取得最小值,且函數(shù)的圖象在軸上截得的線段長(zhǎng)為.
(1)求函數(shù)的解析式;(2)當(dāng)時(shí),函數(shù)的最小值為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|2x+1|+|2x﹣a|.
(1)若f(x)的最小值為2,求a的值;
(2)若f(x)≤|2x﹣4|的解集包含[﹣2,﹣1],求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com