已知B(-6,0)、C(6,0)是△ABC 的兩個(gè)頂點(diǎn),內(nèi)角A、B、C滿足sinB-sinC=
1
2
sinA,則頂點(diǎn)A的軌跡方程為______.
∵B(-6,0)、C(6,0)是△ABC 的兩個(gè)頂點(diǎn),內(nèi)角A、B、C滿足sinB-sinC=
1
2
sinA,
∴由正弦定理得b-c=
1
2
a,即|AC|-|AB|=
1
2
|BC|=6,
∴點(diǎn)A在以B(-6,0)、C(6,0)為焦點(diǎn),即2c=12,c=6;實(shí)軸長為6,即2a=6,a=3的雙曲線的左支上,
∴b2=c2-a2=36-9=27.
又A、B、C構(gòu)成三角形,故點(diǎn)C與A,B不共線,
∴頂點(diǎn)A的軌跡方程為:
x2
9
-
y2
27
=1(x<-3).
故答案為:
x2
9
-
y2
27
=1(x<-3).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知B(-6,0)、C(6,0)是△ABC 的兩個(gè)頂點(diǎn),內(nèi)角A、B、C滿足sinB-sinC=
1
2
sinA,則頂點(diǎn)A的軌跡方程為
x2
9
-
y2
27
=1(x<-3)
x2
9
-
y2
27
=1(x<-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省松原市寧江區(qū)油田高中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

已知B(-6,0)、C(6,0)是△ABC 的兩個(gè)頂點(diǎn),內(nèi)角A、B、C滿足sinB-sinC=sinA,則頂點(diǎn)A的軌跡方程為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省松原市寧江區(qū)油田高中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

已知B(-6,0)、C(6,0)是△ABC 的兩個(gè)頂點(diǎn),內(nèi)角A、B、C滿足sinB-sinC=sinA,則頂點(diǎn)A的軌跡方程為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省松原市寧江區(qū)油田高中高二(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

已知B(-6,0)、C(6,0)是△ABC 的兩個(gè)頂點(diǎn),內(nèi)角A、B、C滿足sinB-sinC=sinA,則頂點(diǎn)A的軌跡方程為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省松原市寧江區(qū)油田高中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

已知B(-6,0)、C(6,0)是△ABC 的兩個(gè)頂點(diǎn),內(nèi)角A、B、C滿足sinB-sinC=sinA,則頂點(diǎn)A的軌跡方程為   

查看答案和解析>>

同步練習(xí)冊答案