考點(diǎn):分段函數(shù)的應(yīng)用
專題:計(jì)算題,數(shù)形結(jié)合,函數(shù)的性質(zhì)及應(yīng)用,簡(jiǎn)易邏輯
分析:分析x<1的函數(shù)的單調(diào)區(qū)間,畫出函數(shù)f(x)的圖象,命題“存在t∈R,且t≠0,使得f(t)≥kt“是假命題,即為任意t∈R,且t≠0,使得f(t)<kt恒成立,作出直線y=kx,設(shè)直線與y=lnx(x≥1)圖象相切于點(diǎn)(m,lnm),求出切點(diǎn)和斜率,設(shè)直線與y=x(x-1)2(x≤0)圖象相切于點(diǎn)(0,0),則有切線斜率k=1,再由圖象觀察即可得到范圍.
解答:
解:當(dāng)x<1時(shí),f(x)=-|x(x-1)
2|=
| x(x-1)2,x<0 | -x(x-1)2,0≤x<1 |
| |
,
當(dāng)x<0,f′(x)=(x-1)(3x-1)>0,則有f(x)得遞增,
當(dāng)0≤x<1,f′(x)=-(x-1)(3x-1),則區(qū)間(0,
)遞減,
(
,1)遞增,
畫出函數(shù)y=f(x)在R上的圖象,如右:
命題“存在t∈R,且t≠0,使得f(t)≥kt“是假命題,
即為任意t∈R,且t≠0,使得f(t)<kt恒成立,
作出直線y=kx,設(shè)直線與y=lnx(x≥1)圖象相切于點(diǎn)(m,lnm),
則由(lnx)′=
,得到k=
,lnm=km,解得,m=e,k=
;
設(shè)直線與y=x(x-1)
2(x≤0)圖象相切于點(diǎn)(0,0),
則y′=[x(x-1)
2]′=(x-1)(3x-1),則有k=1,
由圖象可得,當(dāng)直線繞著原點(diǎn)旋轉(zhuǎn)時(shí),轉(zhuǎn)到與與y=lnx(x≥1)圖象相切,
以及與y=x(x-1)
2(x≤0)圖象相切時(shí),直線恒在上方,即f(t)<kt恒成立,
故實(shí)數(shù)k的取值范圍是(
,1).
點(diǎn)評(píng):本題考查分段函數(shù)及運(yùn)用,考查分段函數(shù)的圖象及直線與圖象之間的關(guān)系,考查存在性命題與全稱性命題的轉(zhuǎn)化,考查不等式的恒成立問題轉(zhuǎn)化為函數(shù)圖象之間的關(guān)系,是一道綜合題.