求下列函數(shù)的導(dǎo)函數(shù)
(1)y=xtanx-
2
sinx

(2)y=
lnx
x+1
-2x
考點:導(dǎo)數(shù)的運算
專題:導(dǎo)數(shù)的概念及應(yīng)用,導(dǎo)數(shù)的綜合應(yīng)用
分析:根據(jù)函數(shù)的導(dǎo)數(shù)公式進行求導(dǎo)即可得到結(jié)論.
解答: 解:(1)∵y=xtanx-
2
sinx
=
xsinx
cosx
-
2
sinx

∴y′=
(xsinx)′cosx-xsinx(cosx)′
cos2x
-
-2cosx
sin2x

=
(sinx+xcosx)cosx+xsinxcosx
cos2x
+
2cosx
sin2x

=
(x+1)sinxcosx+xcos2x
cos2x
+
2cosx
sin2x

(2)∵y=
lnx
x+1
-2x,
y′=
1
x
•(x+1)-lnx
(x+1)2
-2xln2

=
x+1-xlnx
x(x+1)2
-2xln2
點評:本題主要考查導(dǎo)數(shù)的基本運算,要求熟練掌握常見函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的運算法則.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(x1,y1),
b
=(x2,y2),
e
=(1,0),若
a
b
,|
a
-
b
|=2,且
a
-
b
e
的夾角為
π
3
,則x1-x2=( 。
A、2
B、±
3
C、±
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了調(diào)查大學(xué)生對吸煙是否影響學(xué)習的看法,詢問了大學(xué)一、二年級的200個大學(xué)生,詢問的結(jié)果記錄如下:其中大學(xué)一年級110名學(xué)生中有45人認為不會影響學(xué)習,有65人認為會影響學(xué)習,大學(xué)二年級90名學(xué)生中有55人認為不會影響學(xué)習,有35人認為會影響學(xué)習;
(1)根據(jù)以上數(shù)據(jù)繪制一個2×2的列聯(lián)表;
(2)據(jù)此回答,能否有99%的把握斷定大學(xué)生因年級不同對吸煙問題所持態(tài)度也不同?
附表:
p(K2≥k0 0.05 0.025 0.010 0.005 0.001
k0 3.841 5.024 6.635 7.789 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷并證明函數(shù)f(x)=
2x-1
+x的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋子A和B中裝有若干個均勻的紅球和白球,從A中摸出一個紅球的概率是
1
3
,從B中摸出一個紅球的概率為p.
(Ⅰ)從A中有放回地摸球,每次摸出一個,共摸5次.求恰好有2次摸到紅球但不連續(xù)的概率;   
(Ⅱ)若A、B兩個袋子中的球數(shù)之比為1:2,將A、B中的球裝在一起后,從中摸出一個紅球的概率是
2
5
,求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,點A是單位圓與x軸正半軸的交點,點B(-
3
5
,
4
5
),∠AOB=α,
π
2
<α<π,|
OP
|=1,∠AOP=θ,0<θ<
π
2

(1)若cos(α-θ)=-
16
65
,求點P的坐標;
(2)若四邊形OAQP為平行四邊形且面積為S,求S+
OA
OQ
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角α的終邊經(jīng)過點P(1,
3

(1)求sin(π-α)-sin(
π
2
+α)的值;       
(2)寫出角α的集合S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinθ=
m-3
m+5
,cosθ=
4-2m
m+5
,則m等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2
x
-
1
x
)6
的展開式中的常數(shù)項等于
 

查看答案和解析>>

同步練習冊答案