如圖,底面ABCD是邊長(zhǎng)為4的正方形,ED⊥平面ABCD,ED=2,EF∥BD,且2EF=BD.
(1)求證:BF⊥AC:
(2)求幾何體ABCDEF的體積.
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積
專題:證明題,空間位置關(guān)系與距離
分析:(1)運(yùn)用線面垂直的判定和性質(zhì),即可得證;
(2)將多面體分割成棱錐A-BDEF和C-BDEF,則VABCDEF=VA-BDEF+VC-BDEF=2VA-BDEF,運(yùn)用三棱錐的條件公式即可得到體積.
解答: (1)證明:∵四邊形ABCD為正方形,
∴AC⊥BD,又ED⊥平面ABCD
∴ED⊥AC   而ED∩BD=D
∴AC⊥平面EFBD;
又BF?平面EFBD,
∴AC⊥BF.
(2)解:VABCDEF=VA-BDEF+VC-BDEF=2VA-BDEF
又BD=4
2
,EF=2
2

V=
1
3
×
1
2
(4
2
+2
2
)×2×2
2
×2
=16.
點(diǎn)評(píng):本題主要考查線面垂直的判定和性質(zhì),同時(shí)考查割補(bǔ)思想,以及棱錐的體積公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若存在過點(diǎn)(1,1)的直線與曲線y=x2+x和y=ax2-x-1都相切,則a等于( 。
A、-1或-3B、-2或3
C、-1或3D、1或-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x+a|(a∈R)在[-1,1]上的最大值為M(a),則函數(shù)g(x)=M(x)-|x2-1|的零點(diǎn)的個(gè)數(shù)為( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={1,2,3,4,5,6},集合M={2,3,5},N={4,5},則∁U(M∪N)的元素個(gè)數(shù)有(  )
A、0個(gè)B、1個(gè)C、2D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=2px的焦點(diǎn)坐標(biāo)F(1,0),過F的直線L交拋物線C于A、B兩點(diǎn),直線AO、BO分別與直線m:x=-2相交于M、N.
(1)求拋物線C方程.
(2)求
S△ABO
S△MNO
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax-a-x(a>0且a≠1).
(1)求函數(shù)f(x)的定義域,并判斷函數(shù)f(x)的奇偶性;
(2)若0<a<1,解不等式f(x2+6x)+f(4-x)<0;
(3)若f(1)=
3
2
,g(x)=a2x+a-2x-2mf(x)且g(x)在[1,+∞)上的最小值為-2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x1,x2是函數(shù)f(x)=4cosωxsin(ωx+
π
6
)+1兩相鄰零點(diǎn),且滿足|x1-x2|=π,其中ω>0.
(Ⅰ)求ω的值;
(Ⅱ)求f(x)在區(qū)間[-
π
6
π
4
]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了研究“教學(xué)方式”對(duì)教學(xué)質(zhì)量的影響,某高中數(shù)學(xué)老師分別用兩種不同的教學(xué)方式對(duì)入學(xué)數(shù)學(xué)平均分?jǐn)?shù)和優(yōu)秀率都相同的甲、乙兩個(gè)高一新班進(jìn)行教學(xué)(勤奮程度和自覺性都一樣).如圖所示莖葉圖為甲、乙兩班(每班均為20人)學(xué)生的數(shù)學(xué)期末考試成績(jī).
(1)現(xiàn)從甲班數(shù)學(xué)成績(jī)不低于80分的同學(xué)中隨機(jī)抽取兩名同學(xué),求成績(jī)?yōu)?7分的同學(xué)至少有一名被抽中的概率;
(2)學(xué)校規(guī)定:成績(jī)不低于75分的為優(yōu)秀.請(qǐng)?zhí)顚懴旅娴?×2表,并判斷有多大把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”.
甲班 乙班 合計(jì)
優(yōu)秀
不優(yōu)秀
合計(jì)
下面臨界值表僅供參考:
P(x2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.79 10.828
(參考公式:x2=
n(n11n22-n12n21)2
n1+n2+n+1n+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=1,Sn是{an}的前n項(xiàng)和,且3Sn=(n+2)an(n∈N+).
(Ⅰ)若記bn=
an
n(n+1)
,求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)記cn=
an
an+1
+
an+1
an
,證明:2n<c1+c2+…+cn<2n+3,n=1,2,….

查看答案和解析>>

同步練習(xí)冊(cè)答案