4.若復(fù)數(shù)(1-i)(2+ai)是實(shí)數(shù),則實(shí)數(shù)a等于2.

分析 利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡(jiǎn),再由虛部為0得答案.

解答 解:∵(1-i)(2+ai)=(2+a)+(a-2)i是實(shí)數(shù),
∴a-2=0,得a=2.
故答案為:2.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.F1、F2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn),以坐標(biāo)原點(diǎn)O為圓心,|OF2|為半徑的圓與該雙曲線右支交于A、B兩點(diǎn),若△F1AB是等邊三角形,則雙曲線的離心率為( 。
A.$\sqrt{3}$B.2C.$\sqrt{3}$-1D.1+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點(diǎn)E在線段PC上,PC⊥平面BDE,設(shè)PA=1,AD=2.
(1)求平面BPC的法向量;
(2)求二面角B-PC-A的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)函數(shù)f(x)=$\sqrt{{e}^{x}+ax-2}$,其中a>0,若存在實(shí)數(shù)x0∈[1,2],使f[f(x0)]=x0,則a的取值范圍是(0,3-e].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如圖所示,用A1、A2、A3三個(gè)元件連接成一個(gè)系統(tǒng),A1、A2、A3能否正常工作相互獨(dú)立,當(dāng)A1正常工作且A2、A3至少有一個(gè)正常工作時(shí),系統(tǒng)正常工作,已知A1、A2、A3正常工作的概率均為$\frac{2}{3}$,則系統(tǒng)正常工作的概率為( 。
A.$\frac{4}{27}$B.$\frac{8}{27}$C.$\frac{16}{27}$D.$\frac{20}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知數(shù)列{an}前n項(xiàng)和為Sn,且滿足a1=1,4Sn=anan+1+1.
(1)計(jì)算a2、a3、a4的值,并猜想{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)$f(x)=({a+2{{cos}^2}\frac{x}{2}})cos({x+θ})$為奇函數(shù),且$f({\frac{π}{2}})=0$,其中a∈R,θ∈(0,π).
(Ⅰ)求a,θ的值;
(Ⅱ)若$α∈({\frac{π}{2},π})$,$f(\frac{α}{2}+\frac{π}{8})+\frac{2}{5}cos(α+\frac{π}{4})cos2α=0$,求cosα-sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)$f(x)=\frac{e^x}{x}(x>0)$,直線l:x-ty-2=0.
(1)若直線l與曲線y=f(x)有且僅有一個(gè)公共點(diǎn),求公共點(diǎn)橫坐標(biāo)的值;
(2)若0<m<n,m+n≤2,求證:f(m)>f(n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知直線ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,點(diǎn)A(2,$\frac{π}{4}$).
(1)把極坐標(biāo)方程化為直角坐標(biāo)方程.
(2)求點(diǎn)A到直線的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案