求下列函數(shù)的定義域:
(1)y=
ln(5-x)
x-4

(2)y=log2(x2-3x+2)
考點:函數(shù)的定義域及其求法
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)要使函數(shù)有意義,則需5-x>0且x-4≠0,解得即可得到定義域;
(2)要使函數(shù)有意義,則需x2-3x+2>0,解得即可得到定義域.
解答: 解:(1)要使函數(shù)有意義,則需
5-x>0且x-4≠0,
解得,x<5且x≠4,
則定義域為:{x|x<5且x≠4};
(2)要使函數(shù)有意義,則需
x2-3x+2>0,解得,x>2或x<1,
則定義域為:{x|x>2或x<1}.
點評:本題考查函數(shù)的定義域的求法:分式分母不為0,對數(shù)的真數(shù)大于0,考查運算能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知正方形ABCD,邊長為1,過D作PD⊥平面ABCD,且PD=2,E,F(xiàn)分別是AB和BC的中點.
(1)求直線AC到平面PEF的距離;
(2)求直線PB與平面PEF所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在五面體ABCDEF中,AB∥DC,∠BAD=
π
2
,CD=AD=2,四邊形ABFE為平行四邊形,F(xiàn)A⊥平面ABCD,F(xiàn)C=3,ED=
7
.求:
(Ⅰ)求兩異面直線BF與DE所成角的余弦值;
(Ⅱ)FC與平面FAD的所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x2-2|x-a|,當a>O時,若對任意的x∈[O,+∞),不等式f(x-1)≥2f(x)恒成立,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
a
|=8,|
b
|=10,|
a
+
b
|=16,則
a
b
的夾角θ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinxcosx-
1
2
sin(2x-
π
3
).
(1)求f(
3
)的值;
(2)求f(x)的最小正周期及單調(diào)區(qū)間;
(3)求f(x)在[0,
π
2
]上的最大值與最小值及相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正實數(shù)列{an}滿足an=
an-1
man-2
,n=3,4,…其中m為非零實數(shù),若a1•a2014=4,則m=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)在定義域(0,+∞)上是單調(diào)函數(shù),若對任意x∈(0,+∞),都有f[f(
1
x
)-x]=2,則不等式f(x)>2x的解集為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某企業(yè)員工500人參加“學雷鋒”志愿活動,按年齡分組:第1組[25,30),第2組[30,35),第3組[35,40),第4組[40,45),第5組[45,50],得到的頻率分布直方圖如圖所示.
(Ⅰ)如表是年齡的頻率分布表,求正整數(shù)a,b的值;
區(qū)間[25,30)[30,35)[35,40)[40,45)[45,50]
人數(shù)5050a150b
(Ⅱ)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,從這6人中隨機抽取2人參加社區(qū)宣傳交流活動,求至少有1人年齡在第3組的概率.

查看答案和解析>>

同步練習冊答案