17.若直線與圓x2+y2-2x-4y+a=0和函數(shù)$y=\frac{x^2}{4}$的圖象相切于同一點(diǎn),則a的值為3.

分析 設(shè)切點(diǎn)為(t,$\frac{{t}^{2}}{4}$),求出切線方程,利用直線與圓x2+y2-2x-4y+a=0和函數(shù)y=$\frac{{x}^{2}}{4}$的圖象相切于同一點(diǎn),建立方程,求出t,即可得出結(jié)論.

解答 解:設(shè)切點(diǎn)為(t,$\frac{{t}^{2}}{4}$),y′=$\frac{1}{2}x$,x=t時(shí),y′=$\frac{1}{2}$t,
∴切線方程為y-$\frac{{t}^{2}}{4}$=$\frac{1}{2}t$(x-t),即y=$\frac{1}{2}$tx-$\frac{{t}^{2}}{4}$,
∵一直線與圓x2+y2-2x-4y+a=0和函數(shù)y=$\frac{{x}^{2}}{4}$的圖象相切于同一點(diǎn),
∴$\frac{|\frac{1}{2}t-2-\frac{{t}^{2}}{4}|}{\sqrt{\frac{1}{4}{t}^{2}+1}}$=$\sqrt{(1-t)^{2}+(2-\frac{{t}^{2}}{4})^{2}}$,∴t=2,
∴切點(diǎn)為(2,1),代入圓x2+y2-2x-4y+a=0,可得a=3,
故答案為3.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.在某項(xiàng)測(cè)試中,測(cè)量結(jié)果X服從正態(tài)分布N(1,σ2),若P(X<0)=0.2,則P(0<X<2)=0.6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=3-t}\\{y=1+t}\end{array}$(t為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C:ρ=2$\sqrt{2}$cos(θ-$\frac{π}{4}$).
(Ⅰ) 求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ) 求曲線C上的點(diǎn)到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)橢圓E:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{\sqrt{2}}{2}$,且點(diǎn)M($\frac{\sqrt{2}}{2}$,-1)在橢圓上.
(1)求橢圓E的方程;
(2)直線經(jīng)過(guò)點(diǎn)M(-2,0)與橢圓E交于A,B兩點(diǎn),O為原點(diǎn),試求△AOB面積最大值及此時(shí)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.${∫}_{0}^{1}$(2x+5)(x2+5x-3)10dx等于(  )
A.0B.$\frac{{3}^{11}}{11}$C.$\frac{2×{3}^{11}}{11}$D.$\frac{{2}^{11}}{11}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如果z是3+4i的共軛復(fù)數(shù),則z對(duì)應(yīng)的向量$\overrightarrow{OA}$的模是( 。
A.1B.$\sqrt{7}$C.$\sqrt{13}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知命題p:方程x2-2mx+7m-10=0無(wú)解,命題q:x∈(0,+∞),x2-mx+4≥0恒成立,若p∨q是真命題,且p∧q也是真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.函數(shù)f(x)=ax+1+1的圖象恒過(guò)定點(diǎn)P,則點(diǎn)P的坐標(biāo)是(-1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別為a,b,c,$B={60°},b=\sqrt{3}$.
(1)求a+c的最大值;
(2)若△ABC為銳角三角形,求△ABC面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案