設(shè)函數(shù)f(x)=+bx+1(a、b∈R)
(1)若f(-1)=0,則對(duì)任意實(shí)數(shù)均有f(x)≥0成立,求f(x)的表達(dá)式.
(2)在(1)的條件下,當(dāng)x∈[-2,2]時(shí),g(x)=xf(x)-kx是單調(diào)遞增,求實(shí)數(shù)k的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)函數(shù)f(x)=a·b,其中向量a=(cos,sin),(x∈R),向量b=(cosj,sinj)
(Ⅰ)求j的值;
(Ⅱ)若函數(shù)y=1+sin的圖象按向量c=(m,n) (| m |<p)平移可得到函數(shù)
y=f(x)的圖象,求向量c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河南省原名校高三上學(xué)期期聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù)f(x)=+,g(x)=ln(2ex)(其中e為自然對(duì)數(shù)的底數(shù))
(1)求y=f(x)-g(x)(x>0)的最小值;
(2)是否存在一次函數(shù)h(x)=kx+b使得f(x)≥h(x)且h(x)≥g(x)對(duì)一切x>0恒成立;若存在,求出一次函數(shù)的表達(dá)式,若不存在,說(shuō)明理由:
3)數(shù)列{}中,a1=1,=g()(n≥2),求證:<<<1且<.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河南省十所名校高三第三次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)函數(shù)f(x)=-lnx,則y=f(x)( )
A.在區(qū)間(,1),(1,e)內(nèi)均有零點(diǎn)
B.在區(qū)間(,1),(1,e)內(nèi)均無(wú)零點(diǎn)
C.在區(qū)間(,1)內(nèi)有零點(diǎn),在區(qū)間(1,e)內(nèi)無(wú)零點(diǎn)
D.在區(qū)間(,1)內(nèi)無(wú)零點(diǎn),在區(qū)間(1,e)內(nèi)有零點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南省南陽(yáng)市高三上學(xué)期期終質(zhì)量評(píng)估理科數(shù)學(xué) 題型:選擇題
設(shè)函數(shù)f(x)=sin(2x+),則下列結(jié)論正確的是
A.f(x)的圖像關(guān)于直線x=對(duì)稱(chēng)
B.f(x)的圖像關(guān)于點(diǎn)(,0)對(duì)稱(chēng)
C.f(x)的最小正周期為π,且在[0,]上為增函數(shù)
D.把f(x)的圖像向左平移個(gè)單位,得到一個(gè)偶函數(shù)的圖像
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年河南省商丘市高三第二次模擬考試數(shù)學(xué)理卷 題型:解答題
(本小題滿分10分)選修4-5:不等式選講
設(shè)函數(shù)f(x)=|x-1|+|x-2|.
(Ⅰ)畫(huà)出函數(shù)y=f(x)的圖象;
(Ⅱ)若不等式|a+b|-|a-b|≤|a|·f(x)對(duì)任意a,b∈R且a≠0恒成立,求實(shí)數(shù)x的范圍
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com