解:(1)證明:∵f(x+y)+f(x-y)=2f(x)•f(y)
令x=y=0得f(0)+f(0)=2f
2(0),
又∵f(0)≠0
∴f(0)=1
(2)證明:在f(x+y)+f(x-y)=2f(x)•f(y)中,
令x=0得f(y)+f(-y)=2f(0)•f(y)=2f(y),
∴f(y)=f(-y)
∴f(x)是偶函數(shù)
(3)①在已知等式中把x換成
,把y換成
,且由
得
,
∴f(x+c)=-f(x)
②由=1 ①知對?x∈R,有f(x+c)=-f(x),
∴f(x+2c)=-f(x+c),代入得f(x+2c)=f(x),
∴f(x)是以T=2c為一個周期的周期函數(shù).
分析:(1)令x=y=0代入恒等式f(x+y)+f(x-y)=2f(x)•f(y),求解即得.
(2)令x=0代入恒等式f(x+y)+f(x-y)=2f(x)•f(y),整理即可得到f(y)=f(-y),可證得其為偶函數(shù).
(3)①在恒等式中將x換成
,把y換成
,結(jié)合
整理即得結(jié)論;②由①的結(jié)論f(x+c)=-f(x)可以得到f(x+c)=-f(x)=f(x-c),即得周期為2c.
點評:本題考點是抽象函數(shù)及其應(yīng)用,考查利用賦值的辦法求值即證明等式,此類題的特征是根據(jù)題中所給的相關(guān)性質(zhì)靈活賦值以達(dá)到求值或者證明命題的目的.本題綜合性較強(qiáng),對觀察能力與靈活變形能力要求較高.