解關(guān)于x的不等式|2x-1|<2m-1(m∈R).

答案:
解析:

思路分析:要注意對2m-1的正負(fù)情況進行討論.

解:若2m-1≤0,即m≤,則|2x-1|<2m-1恒不成立,此時,原不等式無解;

若2m-1>0,即m>,則-(2m-1)<2x-1<2m-1,所以1-m<x<m.

由上可得:當(dāng)m≤時,原不等式的解集為,

當(dāng)m>時,原不等式的解集為:{x|1-m<x<m}.

方法歸納

對于不等號右側(cè)是含有參數(shù)的式子的這類絕對值不等式,在求解時一定要通過對參數(shù)式子的正、負(fù)、零三種情況的討論來求解.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)=
a•2x+b2x-1
的反函數(shù)f-1(x)的圖象過點A(-3,1).
(1)求實數(shù)a,b的值;
(2)解關(guān)于x的不等式f-1(x)>-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域為R,對任意x1、x2∈R都有f(x1+x2)=f(x1)+f(x2),且x>0時,f(x)<0,f(1)=-2.
(1)判斷函數(shù)f(x)的奇偶性和單調(diào)性;
(2)求f(x)在[-4,4]上的最值;
(3)解關(guān)于x的不等式
1
2
f(bx2)-f(x)>
1
2
f(b2x)-f(b)(b2≠2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x2-1)=logm
x2
2-x2
,其中m>1.
(1)判斷并證明f(x)的奇偶性;
(2)解關(guān)于x的不等式f(x)≥f(1-
2
2+3x
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省鄭州市盛同學(xué)校2011屆高三第一次月考文科數(shù)學(xué)試題 題型:044

(1)解關(guān)于x的不等式≤2;

(2)記(1)中不等式的解集為A,函數(shù)g(x)=lg[(x-a-1)(2a-x)],(a<1)的定義域為B.若BA,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:重慶西南師大附中2011屆高三第一次月考理科數(shù)學(xué)試題 題型:044

(1)解關(guān)于x的不等式≤2;

(2)記(1)中不等式的解集為A,函數(shù)g(x)=lg[(x-a-1)(2a-x)],(a<1)的定義域為B.若BA,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案