精英家教網 > 高中數學 > 題目詳情
對任意復數ω1,ω2,定義ω121
.
ω 
2,其中
.
ω
2是ω2的共軛復數,對任意復數z1,z2,z3有如下命題:
①(z1+z2)*z3=(z1*z3)+(z2*z3
②z1*(z2+z3)=(z1*z2)+(z1*z3
③(z1*z2)*z3=z1*(z2*z3);
④z1*z2=z2*z1
則真命題的個數是( 。
A、1B、2C、3D、4
考點:命題的真假判斷與應用,復數代數形式的乘除運算
專題:簡易邏輯,數系的擴充和復數
分析:根據已知中ω121
.
ω 
2,其中
.
ω
2是ω2的共軛復數,結合復數的運算性質逐一判斷四個結論的真假,可得答案.
解答: 解:①(z1+z2)*z3=(z1+z2
.
z3
=(z1
.
z3
+z2
.
z3
=(z1*z3)+(z2*z3),正確;
②z1*(z2+z3)=z1
.
z2+z3
)=z1
z2
+
.
z3
)=z1
z2
+z1
.
z3
=(z1*z2)+(z1*z3),正確;
③(z1*z2)*z3=z1
z2
.
z3
,z1*(z2*z3)=z1*(z2
.
z3
)=z1
.
z2
.
z3
)=z1
z2
z3,等式不成立,故錯誤;
④z1*z2=z1
z2
,z2*z1=z2
.
z1
,等式不成立,故錯誤;
綜上所述,真命題的個數是2個,
故選:B
點評:本題以命題的真假判斷為載體,考查了復數的運算性質,細心運算即可,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若變量x,y滿足約束條件
x+y≤4
x-y≤2
x≥0,y≥0
,則2x+y的最大值是( 。
A、2B、4C、7D、8

查看答案和解析>>

科目:高中數學 來源: 題型:

下列敘述中正確的是( 。
A、若a,b,c∈R,則“ax2+bx+c≥0”的充分條件是“b2-4ac≤0”
B、若a,b,c∈R,則“ab2>cb2”的充要條件是“a>c”
C、命題“對任意x∈R,有x2≥0”的否定是“存在x∈R,有x2≥0”
D、l是一條直線,α,β是兩個不同的平面,若l⊥α,l⊥β,則α∥β

查看答案和解析>>

科目:高中數學 來源: 題型:

設F1,F2分別為雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點,雙曲線上存在一點P使得(|PF1|-|PF2|)2=b2-3ab,則該雙曲線的離心率為(  )
A、
2
B、
15
C、4
D、
17

查看答案和解析>>

科目:高中數學 來源: 題型:

隨機擲兩枚質地均勻的骰子,它們向上的點數之和不超過5的概率記為p1,點數之和大于5的概率記為p2,點數之和為偶數的概率記為p3,則( 。
A、p1<p2<p3
B、p2<p1<p3
C、p1<p3<p2
D、p3<p1<p2

查看答案和解析>>

科目:高中數學 來源: 題型:

為了研究男羽毛球運動員的身高x(單位:cm)與體重y(單位:kg)的關系,通過隨機抽樣的方法,抽取5名運動員測得他們的身高與體重關系如下表:
身高(x) 172 174 176 178 180
體重(y) 74 73 76 75 77
①從這5個人中隨機的抽取2個人,求這2個人體重之差的絕對值不小于2kg的概率;
②求回歸直線方程
y
=bx+a.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,P是⊙O外一點,PA是切線,A為切點,割線PBC與⊙O相交于點B,C,PC=2PA,D為PC的中點,AD的延長線交⊙O于點E,證明:
(Ⅰ)BE=EC;
(Ⅱ)AD•DE=2PB2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=Asin(x+
π
4
),x∈R,且f(
12
)=
3
2

(1)求A的值;
(2)若f(θ)+f(-θ)=
3
2
,θ∈(0,
π
2
),求f(
4
-θ).

查看答案和解析>>

科目:高中數學 來源: 題型:

若函數f(x)(x∈R)是周期為4的奇函數,且在[0,2]上的解析式為f(x)=
x(1-x),0≤x≤1
sinπx,1<x≤2
,則f(
29
4
)+f(
41
6
)=
 

查看答案和解析>>

同步練習冊答案