已知函數(shù)f(x)=Asin(x+
π
4
),x∈R,且f(
12
)=
3
2

(1)求A的值;
(2)若f(θ)+f(-θ)=
3
2
,θ∈(0,
π
2
),求f(
4
-θ).
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式,兩角和與差的正弦函數(shù)
專題:三角函數(shù)的圖像與性質(zhì)
分析:(1)由函數(shù)f(x)的解析式以及f(
12
)=
3
2
,求得A的值.
(2)由(1)可得 f(x)=
3
sin(x+
π
4
),根據(jù)f(θ)+f(-θ)=
3
2
,求得cosθ 的值,再由 θ∈(0,
π
2
),求得sinθ 的值,從而求得f(
4
-θ) 的值.
解答: 解:(1)∵函數(shù)f(x)=Asin(x+
π
4
),x∈R,且f(
12
)=
3
2

∴Asin(
12
+
π
4
)=Asin
3
=A•
3
2
=
3
2
,
∴A=
3

(2)由(1)可得 f(x)=
3
sin(x+
π
4
),
∴f(θ)+f(-θ)=
3
sin(θ+
π
4
)+
3
sin(-θ+
π
4
)=2
3
sin
π
4
cosθ=
6
cosθ=
3
2
,
∴cosθ=
6
4
,再由 θ∈(0,
π
2
),可得sinθ=
10
4

∴f(
4
-θ)=
3
sin(
4
-θ+
π
4
)=
3
sin(π-θ)=
3
sinθ=
30
4
點(diǎn)評(píng):本題主要考查三角函數(shù)的恒等變換,同角三角函數(shù)的基本關(guān)系,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)α∈(0,
π
2
),β∈(0,
π
2
),且tanα=
1+sinβ
cosβ
,則( 。
A、3α-β=
π
2
B、3α+β=
π
2
C、2α-β=
π
2
D、2α+β=
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)任意復(fù)數(shù)ω1,ω2,定義ω121
.
ω 
2,其中
.
ω
2是ω2的共軛復(fù)數(shù),對(duì)任意復(fù)數(shù)z1,z2,z3有如下命題:
①(z1+z2)*z3=(z1*z3)+(z2*z3
②z1*(z2+z3)=(z1*z2)+(z1*z3
③(z1*z2)*z3=z1*(z2*z3);
④z1*z2=z2*z1
則真命題的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩位同學(xué)從A、B、C、D共4所高校中,任選兩所參加自主招生考試(并且只能選兩所高校),但同學(xué)甲特別喜歡A高校,他除選A高校外,再在余下的3所中隨機(jī)選1所;同學(xué)乙對(duì)4所高校沒有偏愛,在4所高校中隨機(jī)選2所.
(1)求乙同學(xué)選中D高校的概率;
(2)求甲、乙兩名同學(xué)恰有一人選中D高校的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

隨機(jī)觀測生產(chǎn)某種零件的某工作廠25名工人的日加工零件個(gè)數(shù)(單位:件),獲得數(shù)據(jù)如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根據(jù)上述數(shù)據(jù)得到樣本的頻率分布表如下:
分組頻數(shù)頻率
[25,30]30.12
(30,35]50.20
(35,40]80.32
(40,45]n1f1
(45,50]n2f2
(1)確定樣本頻率分布表中n1,n2,f1和f2的值;
(2)根據(jù)上述頻率分布表,畫出樣本頻率分布直方圖;
(3)根據(jù)樣本頻率分布直方圖,求在該廠任取4人,至少有1人的日加工零件數(shù)落在區(qū)間(30,35]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年“五一節(jié)”期間,高速公路車輛較多,交警部門通過路面監(jiān)控裝置抽樣調(diào)查某一山區(qū)路段汽車行駛速度,采用的方法是:按到達(dá)監(jiān)控點(diǎn)先后順序,每隔50輛抽取一輛,總共抽取120輛,分別記下其行車速度,將行車速度(km/h)分成七段[60,65),[65,70),[70,75),[75,80),[80,85),[85,90),[90,95)后得到如圖所示的頻率分布直方圖,據(jù)圖解答下列問題:
(Ⅰ)求a的值,并說明交警部門采用的是什么抽樣方法?
(Ⅱ)求這120輛車行駛速度的眾數(shù)和中位數(shù)的估計(jì)值(精確到0.1);
(Ⅲ)若該路段的車速達(dá)到或超過90km/h即視為超速行駛,試根據(jù)樣本估計(jì)該路段車輛超速行駛的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xe-x
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)當(dāng)0<x<1時(shí)f(x)>f(
k
x
),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某大學(xué)為了解在校本科生對(duì)參加某項(xiàng)社會(huì)實(shí)踐活動(dòng)的意向,擬采用分層抽樣的方向,從該校四個(gè)年級(jí)的本科生中抽取一個(gè)容量為300的樣本進(jìn)行調(diào)查,已知該校一年級(jí)、二年級(jí)、三年級(jí)、四年級(jí)的本科生人數(shù)之比為4:5:5:6,則應(yīng)從一年級(jí)本科生中抽取
 
名學(xué)生.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,b>0,且不等式
1
a
+
1
b
+
k
a+b
≥0恒成立,則實(shí)數(shù)k的最小值等于
 

查看答案和解析>>

同步練習(xí)冊答案