【題目】為了解某班學生喜好體育運動是否與性別有關,對本班60人進行了問卷調(diào)查得到了如下的列聯(lián)表:

喜好體育運動

不喜好體育運動

合計

男生

5

女生

10

合計

60

已知按喜好體育運動與否,采用分層抽樣法抽取容量為12的樣本,則抽到喜好體育運動的人數(shù)為7.

1)請將上面的列聯(lián)表補充完整;

2)能否在犯錯誤的概率不超過0.001的前提下認為喜好體育運動與性別有關?說明你的理由;

下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

【答案】1)列聯(lián)表見解析;(2)能,理由見解析.

【解析】

1)根據(jù)分層抽樣可知喜好體育運動的人數(shù)為,其中男生人數(shù)為,則不喜好體育運動的人數(shù)為,其中女生人數(shù)為,本班女生人數(shù)為,本班男生人數(shù)為,填表即可.

2)根據(jù)獨立性檢驗的公式,求解,與比較,得出結論,即可.

1)設喜好體育運動的人數(shù)為人,由已知得解,∴.

列聯(lián)表補充如下:

喜好體育運動

不喜好體育運動

合計

男生

25

5

30

女生

10

20

30

合計

35

25

60

2)∵.

能在犯錯誤的概率不超過0.001的前提下,認為喜好體育運動與性別有關.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】一個圓錐的體積為,當這個圓錐的側面積最小時,其母線與底面所成角的正切值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四面體中,平面,..M的中點,P的中點,點Q在線段上,且.

1)證明:;

2)若二面角的大小為60°,求的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知點為拋物線的焦點,過點的直線交拋物線于兩點,點在拋物線上,使得的重心軸上,直線軸于點,且在點的右側.、的面積分別.

1)求的值及拋物線的方程;

2)求的最小值及此時點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)若曲線在點處有相同的切線,求函數(shù)的極值;

2)若,討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) .

(1)若,判斷函數(shù)的單調(diào)性;

(2)討論函數(shù)的極值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:極坐標與參數(shù)方程]

在直角坐標系中,曲線的參數(shù)方程為是參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的極坐標方程和曲線的直角坐標方程;

(2)若射線 與曲線交于兩點,與曲線交于,兩點,求取最大值時的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,平面,, .,,,的中點.

(Ⅰ)證明:⊥平面;

(Ⅱ)若二面角的余弦值是,求的值;

(Ⅲ)若,在線段上是否存在一點,使得. 若存在,確定點的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的頂點,邊上的高所在的直線的方程為中點,且所在的直線的方程為.

1)求邊所在的直線方程;

2)求邊所在的直線方程.

查看答案和解析>>

同步練習冊答案