【題目】為了解某班學生喜好體育運動是否與性別有關,對本班60人進行了問卷調(diào)查得到了如下的列聯(lián)表:
喜好體育運動 | 不喜好體育運動 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 60 |
已知按喜好體育運動與否,采用分層抽樣法抽取容量為12的樣本,則抽到喜好體育運動的人數(shù)為7.
(1)請將上面的列聯(lián)表補充完整;
(2)能否在犯錯誤的概率不超過0.001的前提下認為喜好體育運動與性別有關?說明你的理由;
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中)
【答案】(1)列聯(lián)表見解析;(2)能,理由見解析.
【解析】
(1)根據(jù)分層抽樣可知喜好體育運動的人數(shù)為,其中男生人數(shù)為,則不喜好體育運動的人數(shù)為,其中女生人數(shù)為,本班女生人數(shù)為,本班男生人數(shù)為,填表即可.
(2)根據(jù)獨立性檢驗的公式,求解,與比較,得出結論,即可.
(1)設喜好體育運動的人數(shù)為人,由已知得解,∴.
列聯(lián)表補充如下:
喜好體育運動 | 不喜好體育運動 | 合計 | |
男生 | 25 | 5 | 30 |
女生 | 10 | 20 | 30 |
合計 | 35 | 25 | 60 |
(2)∵.
能在犯錯誤的概率不超過0.001的前提下,認為喜好體育運動與性別有關.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知點為拋物線的焦點,過點的直線交拋物線于、兩點,點在拋物線上,使得的重心在軸上,直線交軸于點,且在點的右側.記、的面積分別、.
(1)求的值及拋物線的方程;
(2)求的最小值及此時點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若曲線與在點處有相同的切線,求函數(shù)的極值;
(2)若,討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:極坐標與參數(shù)方程]
在直角坐標系中,曲線的參數(shù)方程為(是參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求曲線的極坐標方程和曲線的直角坐標方程;
(2)若射線 與曲線交于,兩點,與曲線交于,兩點,求取最大值時的值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,平面,, .,,,是的中點.
(Ⅰ)證明:⊥平面;
(Ⅱ)若二面角的余弦值是,求的值;
(Ⅲ)若,在線段上是否存在一點,使得⊥. 若存在,確定點的位置;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com