已知x,y為正數(shù),若,則x+2y的最小值是   
【答案】分析:利用與x+2y相乘,展開利用均值不等式求解即可.
解答:解:(1)∵x>0,y>0,,
∴x+2y=(x+2y)()=++19≥6+19.
當(dāng)且僅當(dāng)時(shí),上式等號(hào)成立,
則x+2y的最小值是
故答案為:
點(diǎn)評(píng):利用基本不等式求函數(shù)最值是高考考查的重點(diǎn)內(nèi)容,對(duì)不符合基本不等式形式的應(yīng)首先變形,然后必須滿足三個(gè)條件:一正、二定、三相等.同時(shí)注意靈活運(yùn)用“1”的代換.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y為正數(shù).
(1)若
1
x
+
9
y
=1,求x+2y的最小值;(2)若x+2y=2,求
xy
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y為正數(shù),若
1
x
+
9
y
=1
,則x+2y的最小值是
19+6
2
19+6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知x,y為正數(shù),若數(shù)學(xué)公式,則x+2y的最小值是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)必做100題(必修5)(解析版) 題型:解答題

已知x,y為正數(shù).
(1)若+=1,求x+2y的最小值;(2)若x+2y=2,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案