已知函數(shù)在點處取得極小值-4,使其導(dǎo)數(shù)的取值范圍為,求:
(1)的解析式;
(2),求的最大值;
(1)(2)當(dāng),當(dāng),當(dāng)

試題分析:⑴ ,導(dǎo)數(shù)的取值范圍為,所以,點處取得極小值-4 ,聯(lián)立方程求解得,所以
,對稱軸為
當(dāng)時,最大值為,
當(dāng)時,最大值為,
當(dāng)時,最大值為
點評:利用函數(shù)在極值點處導(dǎo)數(shù)為0來確定極值點的位置,第二問中函數(shù)含有參數(shù),求最值需按對稱軸的位置分情況討論函數(shù)取得的最值
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知的導(dǎo)函數(shù),且,設(shè)

(Ⅰ)討論在區(qū)間上的單調(diào)性;
(Ⅱ)求證:
(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),,設(shè)函數(shù),且函數(shù)的零點均在區(qū)間內(nèi),則的最小值為(     )
A.11B.10C.9D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù),,其中為實數(shù).
(1)若上是單調(diào)減函數(shù),且上有最小值,求的取值范圍;
(2)若上是單調(diào)增函數(shù),試求的零點個數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè),若,則(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)當(dāng)時,求曲線在點處的切線方程;
(Ⅱ)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知是定義在上的奇函數(shù),,則不等式的解集是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時,求的最小值;
(2)若直線對任意的都不是曲線的切線,求的取值范圍;
(3)設(shè),求的最大值的解析式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(1)若函數(shù)在x=1處與直線相切.
①求實數(shù),的值;②求函數(shù)上的最大值.
(2)當(dāng)時,若不等式對所有的都成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案