某公司生產一種電子儀器的固定成本為20000元,每生產一臺儀器需增加投入100元,已知總收益滿足函數(shù):,其中是儀器的月產量.
(注:總收益=總成本+利潤)
(1)將利潤表示為月產量的函數(shù);
(2)當月產量為何值時,公司所獲利潤最大?最大利潤為多少元?

(1)(2)當月產量為300臺時,利潤最大,最大利潤為元.

解析試題分析:(1)根據(jù)題意總收益總成本利潤,故利潤總收益總成本,易得函數(shù)關系式;
(2)通過(1)知函數(shù)關系式為分段函數(shù),故函數(shù)的最大值為各段最大值中的最大值.
試題解析:(1)因每月產量臺故總成本為
從而 
(2)①當時,
時,
②當時,為減函數(shù),
,
故當月產量為300臺時,利潤最大,最大利潤為元.
考點:分段函數(shù)的最值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(1)解方程:
(2)已知命題命題且命題的必要條件,求實數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設a>0,f(x)=是R上的偶函數(shù).
(1)求a的值;
(2)判斷并證明函數(shù)f(x)在[0,+∞)上的單調性;
(3)求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,建立平面直角坐標系xOy,x軸在地平面上,y軸垂直于地平面,單位長度為1千米.某炮位于坐標原點.已知炮彈發(fā)射后的軌跡在方程y=kx-(1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關.炮的射程是指炮彈落地點的橫坐標.

(1)求炮的最大射程;
(2)設在第一象限有一飛行物(忽略其大小),其飛行高度為3.2千米,試問它的橫坐標a不超過多少時,炮彈可以擊中它?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)和函數(shù),其中為參數(shù),且滿足.
(1)若,寫出函數(shù)的單調區(qū)間(無需證明);
(2)若方程上有唯一解,求實數(shù)的取值范圍;
(3)若對任意,存在,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

有一種新型的洗衣液,去污速度特別快.已知每投放k(1≤k≤4,且k∈R)個單位的洗衣液在一定量水的洗衣機中,它在水中釋放的濃度y(克/升)隨著時間x(分鐘)變化的函數(shù)關系式近似為y=k·f(x),其中f(x)=若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應時刻所釋放的濃度之和.根據(jù)經(jīng)驗,當水中洗衣液的濃度不低于4(克/升)時,它才能起到有效去污的作用.
(1)若只投放一次k個單位的洗衣液,兩分鐘時水中洗衣液的濃度為3(克/升),求k的值;
(2)若只投放一次4個單位的洗衣液,則有效去污時間可達幾分鐘?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)f(x)=ax2bxc,且f(1)=-,3a>2c>2b,求證:
(1)a>0,且-3<<-;
(2)函數(shù)f(x)在區(qū)間(0,2)內至少有一個零點;
(3)設x1,x2是函數(shù)f(x)的兩個零點,則≤|x1x2|<.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)是偶函數(shù).
(1)求的值;
(2)設,若函數(shù)的圖象有且只有一個公共點,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某公司試銷一種成本單價為500元/件的新產品,規(guī)定試銷時銷售單價不低于成本單價,又不高于800元/件.經(jīng)試銷調查,發(fā)現(xiàn)銷售量(件)與銷售單價(元/件)可近似看作一次函數(shù)的關系(如圖所示).

(1)根據(jù)圖象,求一次函數(shù)的表達式;
(2)設公司獲得的毛利潤(毛利潤=銷售總價—成本總價)為元. 試用銷售單價表示毛利潤并求銷售單價定為多少時,該公司獲得最大毛利潤?最大毛利潤是多少?此時的銷售量是多少?

查看答案和解析>>

同步練習冊答案