(1)化簡;

(2)證明.(注:其中
【答案】分析:(1)利用二倍角公式和誘導(dǎo)公式化簡分式的分子和分母,約分求得最后的結(jié)果.
(2)利用同腳三角函數(shù)的基本關(guān)系化簡等式的左邊為 ,同理化簡等式的右邊也等于 ,從而得到
 等式成立.
解答:解:(1)===-1.
(2)等式左邊====
等式右邊==== 
===
故等式左邊和等式右邊相等,
等式成立.
點(diǎn)評:本題主要考查三角函數(shù)的恒等變換及化簡求值,熟練利用公式對式子進(jìn)行變形,是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)化簡[(a-
3
2
b2)-1(ab-3)
1
2
(b
1
2
)7]
1
3

(2)解
1
6
lgx=
1
3
lga+2lgb+lgc.
(3)用二項(xiàng)式定理計(jì)算(3.02)4,使誤差小于千分之一.
(4)試證直角三角形弦上的半圓的面積,等于勾上半圓的面積與股上半圓的面積的總和.
(5)已知球的半徑等于r,試求內(nèi)接正方形的體積.
(6)已知a是三角形的一邊,β及γ是這邊的兩鄰角,試求另一邊b的計(jì)算公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:設(shè)計(jì)必修一數(shù)學(xué)(人教A版) 人教A版 題型:022

根據(jù)定義討論(或證明)函數(shù)增減性的一般步驟是:

(1)設(shè)x1、x2是給定區(qū)間內(nèi)的任意兩個(gè)值且x1<x2;

(2)作差f(x1)-f(x2),并將此差化簡、變形;

(3)判斷f(x1)-f(x2)的正負(fù),從而證得函數(shù)的增減性.

利用函數(shù)的單調(diào)性可以把函數(shù)值的大小比較的問題轉(zhuǎn)化為自變量的大小比較的問題.

函數(shù)的單調(diào)性只能在函數(shù)的定義域內(nèi)來討論.這即是說,函數(shù)的單調(diào)區(qū)間是其定義域的________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)化簡[(a-
3
2
b2)-1(ab-3)
1
2
(b
1
2
)7]
1
3

(2)解
1
6
lgx=
1
3
lga+2lgb+lgc.
(3)用二項(xiàng)式定理計(jì)算(3.02)4,使誤差小于千分之一.
(4)試證直角三角形弦上的半圓的面積,等于勾上半圓的面積與股上半圓的面積的總和.
(5)已知球的半徑等于r,試求內(nèi)接正方形的體積.
(6)已知a是三角形的一邊,β及γ是這邊的兩鄰角,試求另一邊b的計(jì)算公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:1954年全國統(tǒng)一高考數(shù)學(xué)試卷(解析版) 題型:解答題

(1)化簡
(2)解lga+2lgb+lgc.
(3)用二項(xiàng)式定理計(jì)算(3.02)4,使誤差小于千分之一.
(4)試證直角三角形弦上的半圓的面積,等于勾上半圓的面積與股上半圓的面積的總和.
(5)已知球的半徑等于r,試求內(nèi)接正方形的體積.
(6)已知a是三角形的一邊,β及γ是這邊的兩鄰角,試求另一邊b的計(jì)算公式.

查看答案和解析>>

同步練習(xí)冊答案