如圖,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=
2
,AA′=1,點(diǎn)M,N分別為A′B和B′C′的中點(diǎn).
(Ⅰ)證明:MN平面A′ACC′;
(Ⅱ)求三棱錐A′-MNC的體積.
(椎體體積公式V=
1
3
Sh,其中S為地面面積,h為高)
(Ⅰ)(證法一)
連接AB′,AC′,由已知∠BAC=90°,AB=AC,三棱柱ABC-A′B′C′為直三棱柱,

所以M為AB′的中點(diǎn),又因?yàn)镹為B′C′中點(diǎn),所以MNAC′,
又MN?平面A′ACC′,AC′?平面A′ACC′,所以MN平面A′ACC′;
(證法二)
取A′B′中點(diǎn),連接MP,NP.而M,N分別為AB′,B′C′中點(diǎn),所以MPAA′,PNA′C′.所以MP平面A′ACC′,PN平面A′ACC′;又MP∩PN=P,
所以平面MPN平面A′ACC′,而MN?平面MPN,所以MN平面A′ACC′;
(Ⅱ)(解法一)連接BN,由題意A′N⊥B′C′,平面A′B′C′∩平面B′BCC′=B′C′,所以A′N⊥平面NBC,又A′N=
1
2
B′C′=1,故
V A′-MNC=V N-A′MC=
1
2
V N-A′BC=
1
2
V A′-NBC=
1
6

(解法二)
V A′-MNC=V A′-NBC-V M-NBC=
1
2
V A′-NBC=
1
6
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,P△ABC所在平面外一點(diǎn),PA=PB,CB⊥平面PAB,M是PC中點(diǎn),N是AB上的點(diǎn),AN=3NB,
(1)求證:MN⊥AB;
(2)當(dāng)∠PAB=90°,BC=2,AB=4時(shí),求MN的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,PA垂直于矩形ABCD所在的平面,M、N分別是AB、PC的中點(diǎn)
(1)求證:MN平面PAD;
(2)若∠PAD=45°,求證:MN⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面ABCD為正方形,PA⊥平面ABCD,PA=AB,點(diǎn)E是PD的中點(diǎn).
(1)求證:PB平面ACE;
(2)若四面體E-ACD的體積為
2
3
,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖四棱錐P-ABCD中,ABCE為菱形,E、G、F分別是線段AD、CE、PB的中點(diǎn).求證:FG平面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過兩條異面直線中的一條且平行于另一條的平面有______個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形ABCD中,已知AB=2AD=4,E為AB的中點(diǎn),現(xiàn)將△AED沿DE折起,使點(diǎn)A到點(diǎn)P處,滿足PB=PC,設(shè)M、H分別為PC、DE的中點(diǎn).
(1)求證:BM平面PDE;
(2)線段BC上是否存在一點(diǎn)N,使BC⊥平面PHN?試證明你的結(jié)論;
(3)求△PBC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:正方體ABCD-A1B1C1D1,AA1=2,E為棱CC1的中點(diǎn).
(1)求證:B1D1⊥AE;
(2)求證:AC平面B1DE;
(3)(文)求三棱錐A-BDE的體積.
(理)求三棱錐A-B1DE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(文科)如圖,正方體ABCD-A1B1C1D1中,M,N,E,F(xiàn)分別是棱A1B1,A1D1,B1C1,C1D1的中點(diǎn),
求證:平面AMN平面EFDB.

查看答案和解析>>

同步練習(xí)冊答案