如圖,在矩形ABCD中,已知AB=2AD=4,E為AB的中點,現(xiàn)將△AED沿DE折起,使點A到點P處,滿足PB=PC,設M、H分別為PC、DE的中點.
(1)求證:BM平面PDE;
(2)線段BC上是否存在一點N,使BC⊥平面PHN?試證明你的結(jié)論;
(3)求△PBC的面積.
證明:(1)取PD的中點F,連接EF,F(xiàn)M
由條件知:FM平行且等于DC的一半,EB平行且等于DC的一半
∴FMEB,且FM=EB
則四邊形EFMB是平行四邊形
則BMEF
∵BM?平面PDE,EF?平面PDE
∴BM平面PDE;
(2)當N為BC的中點時,BC⊥平面PHN,理由如下:
由題意得,HN為直角梯形BCDE的中位線
∴HN⊥BC
∵PB=PC
∴PN⊥BC
又∵HN∩PN=N
∴BC⊥平面PHN,
(3)由(2)中結(jié)論可得,BC⊥PH,
又∵PH⊥DE
故PH⊥底面BCDE
則PH⊥HN,即△PHN為直角三角形
∵AB=2AD=4,E為AB的中點
∴BC=2,HN=3,PH=
2
,則PN=
11

∴△PBC的面積S=
1
2
•BC•PN=
11

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖所示,在正方體ABCD-A1B1C1D1中E、F分別在A1D、AC上,且A1E=
2
3
A1D,AF=
1
3
AC,則(  )
A.EF至多與A1D、AC之一垂直
B.EF是A1D、AC的公垂線
C.EF與BD1相交
D.EF與BD1異面

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,梯形ABCD和正△PAB所在平面互相垂直,其中ABDC,AD=CD=
1
2
AB
,且O為AB中點.
(I)求證:BC平面POD;
(II)求證:AC⊥PD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=
2
,AA′=1,點M,N分別為A′B和B′C′的中點.
(Ⅰ)證明:MN平面A′ACC′;
(Ⅱ)求三棱錐A′-MNC的體積.
(椎體體積公式V=
1
3
Sh,其中S為地面面積,h為高)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面ABCD是正方形,PA⊥底面ABCD,E,F(xiàn)分別是AC,PB的中點.
(Ⅰ)證明:EF平面PCD;
(Ⅱ)若PA=AB,求EF與平面PAC所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知邊長都為1正方形ABCD與正方形ABEF,∠DAF=90°,M,N分別是對角線AC和BF上的點,且AM=FN=a(0<a<
2
)

(1)求證:MN平面BCE;
(2)求MN的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在斜三棱柱ABC-A1B1C1中,側(cè)面ACC1A1⊥平面ABC,∠ACB=90°.
(1)求證:BC⊥AA1
(2)若M,N是棱BC上的兩個三等分點,求證:A1N平面AB1M.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,正三棱柱ABC-A1B1C1中,AB=2,AA1=3,D為C1B的中點,P為AB邊上的動點.
(Ⅰ)當點P為AB的中點時,證明DP平面ACC1A1;
(Ⅱ)若AP=3PB,求三棱錐B-CDP的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

平面α平面β的一個充分條件是(  )
A.存在一條直線a,aα,aβ
B.存在一條直線a,a?α,aβ
C.存在兩條平行直線a,b,a?α,b?β,aβ,bα
D.存在兩條異面直線a,b,a?α,b?β,aβ,bα

查看答案和解析>>

同步練習冊答案