精英家教網 > 高中數學 > 題目詳情
在三棱錐A-BCD中,側棱AB、AC、AD兩兩垂直,△ABC、△ACD、△ADB的面積分別為、,則三棱錐A-BCD的外接球的體積為( )
A.π
B.
C.
D.
【答案】分析:三棱錐A-BCD中,側棱AB、AC、AD兩兩垂直,補成長方體,兩者的外接球是同一個,長方體的對角線就是球的直徑,求出長方體的三度,轉化為對角線長,即可求解外接球的體積.
解答:解:三棱錐A-BCD中,側棱AB、AC、AD兩兩垂直,補成長方體,兩者的外接球是同一個,長方體的對角線就是球的直徑,
設長方體的三度為a,b,c由題意得:ab=,ac=,bc=,
解得:a=,b=,c=1,
所以球的直徑為:
它的半徑為
球的體積為=;
故選A
點評:本題是基礎題,考查幾何體的外接球的體積,三棱錐轉化為長方體,兩者的外接球是同一個,以及長方體的對角線就是球的直徑是解題的關鍵所在.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,在三棱錐A-BCD中,DA,DB,DC兩兩垂直,且長度均為1,E為BC中點,則下列結論正確的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

在三棱錐A-BCD中,AB=4,CD=2,且異面直線AB、CD所成的角為60°,若M、N分別是AD、BC的中點,則MN=
3
7
3
7

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•渭南三模)在三棱錐A-BCD中,BD=BC=1,BD⊥BC,DE⊥AB,AD=2,AD⊥平面BCD.
(Ⅰ)求證:DE⊥平面ABC;
(Ⅱ)求平面BAC與平面DAC夾角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖所示,在三棱錐A-BCD中,側面ABD、ACD是全等的直角三角形,AD是公共的斜
邊,且AD=
3
,BD=CD=1,另一個側面ABC是正三角形.
(1)當正視圖方向與向量
CD
的方向相同時,畫出三棱錐A-BCD的三視圖;(要求標出尺寸)
(2)求二面角B-AC-D的余弦值;
(3)在線段AC上是否存在一點E,使ED與平面BCD成30°角?若存在,確定點E的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在三棱錐A-BCD中,平行于BC的平面MNPQ分別交AB、AC、CD、BD于M、N、P、Q四點,且MN=PQ.
(1)求證:四邊形MNPQ為平行四邊形;
(2)試在直線AC上找一點F,使得MF⊥AD.

查看答案和解析>>

同步練習冊答案