函數(shù)y=
x2
4
在點(diǎn)P(2,1)處的切線方程為 ______.
∵函數(shù)y=
x2
4
,
∴y′=
1
2
x,
∴在點(diǎn)P(2,1)處的切線的斜率為:
k=1,
∴在點(diǎn)P(2,1)處的切線方程為:
y-1=1×(x-2)
即:x-y-1=0.
故答案為:x-y-1=0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
x24
在點(diǎn)P(2,1)處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P(x,y)在函數(shù)y=3
1-
x2
4
的圖象上運(yùn)動(dòng),則2x-y的最大值與最小值之比為
-
4
5
-
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)給出以下判斷:
(1)b=0是函數(shù)f(x)=ax2+bx+c為偶函數(shù)的充要條件;
(2)橢圓
x2
4
+
y2
3
=1
中,以點(diǎn)(1,1)為中點(diǎn)的弦所在直線方程為x+2y-3=0;
(3)回歸直線
y
=
b
x+
a
必過(guò)點(diǎn)(
.
x
,
.
y
)
;
(4)如圖,在四面體ABCD中,設(shè)E為△BCD的重心,則
AE
=
AB
+
1
2
AC
+
2
3
AD

(5)雙曲線
x2
a2
-
y2
b2
=1( a>0 , b>0 )
的兩焦點(diǎn)為F1,F(xiàn)2,P為右支是異于右頂點(diǎn)的任一點(diǎn),△PF1F2的內(nèi)切圓圓心為T(mén),則點(diǎn)T的橫坐標(biāo)為a.其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

點(diǎn)P(x,y)在函數(shù)y=3
1-
x2
4
的圖象上運(yùn)動(dòng),則2x-y的最大值與最小值之比為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案