18.直線ax+by+c=0與圓O:x2+y2=16相交于兩點M、N,若c2=a2+b2,P為圓O上任意一點,則$\overrightarrow{PM}•\overrightarrow{PN}$的取值范圍是[-6,10].

分析 取MN的中點A,連接OA,則OA⊥MN.由點到直線的距離公式算出OA=1,從而在Rt△AON中,得到cos∠AON=$\frac{1}{4}$,得cos∠MON=-$\frac{7}{8}$,最后根據(jù)向量數(shù)量積的公式即可算出$\overrightarrow{OM}$•$\overrightarrow{ON}$的值,運用向量的加減運算和向量數(shù)量積的定義,可得$\overrightarrow{PM}•\overrightarrow{PN}$=2-8cos∠AOP,考慮$\overrightarrow{OP}$,$\overrightarrow{OA}$同向和反向,可得最值,即可得到所求范圍.

解答 解:取MN的中點A,連接OA,則OA⊥MN,
∵c2=a2+b2,
∴O點到直線MN的距離OA=$\frac{|c|}{\sqrt{{a}^{2}+^{2}}}$=1,
x2+y2=16的半徑r=4,
∴Rt△AON中,設(shè)∠AON=θ,得cosθ=$\frac{OA}{ON}$=$\frac{1}{4}$,
cos∠MON=cos2θ=2cos2θ-1=$\frac{1}{8}$-1=-$\frac{7}{8}$,
由此可得,$\overrightarrow{OM}$•$\overrightarrow{ON}$=|$\overrightarrow{OM}$|•|$\overrightarrow{ON}$|cos∠MON
=4×4×(-$\frac{7}{8}$)=-14,
則$\overrightarrow{PM}•\overrightarrow{PN}$=($\overrightarrow{OM}$-$\overrightarrow{OP}$)•($\overrightarrow{ON}$-$\overrightarrow{OP}$)=$\overrightarrow{OM}$•$\overrightarrow{ON}$+$\overrightarrow{OP}$2-$\overrightarrow{OP}$•($\overrightarrow{OM}$+$\overrightarrow{ON}$)
=-14+16-2$\overrightarrow{OP}$•$\overrightarrow{OA}$=2-2|$\overrightarrow{OP}$|•|$\overrightarrow{OA}$|•cos∠AOP=2-8cos∠AOP,
當(dāng)$\overrightarrow{OP}$,$\overrightarrow{OA}$同向時,取得最小值且為2-8=-6,
當(dāng)$\overrightarrow{OP}$,$\overrightarrow{OA}$反向時,取得最大值且為2+8=10.
則$\overrightarrow{PM}•\overrightarrow{PN}$的取值范圍是[-6.10].
故答案為:[-6.10].

點評 本題考查向量的加減運算和向量的數(shù)量積的定義,著重考查了直線與圓的位置關(guān)系和向量數(shù)量積的運算公式等知識點,注意運用轉(zhuǎn)化思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知x,y的一組數(shù)據(jù)如表所示:
x13678
y12345
(1)從x,y中各取一個數(shù),求x+y≥10的概率:
(2)對于表中數(shù)據(jù),甲、乙兩同學(xué)給出的擬合直線分別為$y=\frac{1}{3}x+1$與$y=\frac{1}{2}x+\frac{1}{2}$,試判斷哪條直線擬合程度更好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知tanα=-2
(1)求$\frac{3}{2}$sin2α-2cos2α+3的值;
(2)求$\frac{sin(4π-α)cos(3π+α)cos(\frac{π}{2}+α)cos(\frac{5}{2}π-α)}{cos(π-α)sin(3π-α)sin(-π-α)sin(\frac{13}{2}π+α)}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某校高一(2)班共有60名同學(xué)參加期末考試,現(xiàn)將其數(shù)學(xué)學(xué)科成績(均為整數(shù))分成六個分?jǐn)?shù)段[40,50),[50,60),…,[90,100],畫出如圖所示的部分頻率分布直方圖,請觀察圖形信息,回答下列問題:
(1)求a并估計這次考試中該學(xué)科的中位數(shù)、平均值;
(2)現(xiàn)根據(jù)本次考試分?jǐn)?shù)分成下列六段(從低分段到高分段依次為第一組、第二組…第六組)為提高本班數(shù)學(xué)整體成績,決定組與組之間進行幫扶學(xué)習(xí).若選出的兩組分?jǐn)?shù)之差不小于30分(以分?jǐn)?shù)段為依據(jù),不以具體學(xué)生分?jǐn)?shù)為依據(jù),如:[40,50),[70,80)這兩組分?jǐn)?shù)之差為30分),則稱這兩組為“最佳組合”,試求選出的兩組為“最佳組合”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=lnx-ex+m在x=1處有極值,求m的值及f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.對于函數(shù)f(x),若在定義域x內(nèi)存在實數(shù)x,滿足f(-x)=-f(x),則稱f(x)為“局部奇函數(shù)”.p:f(x)=m+2x為定義在[-1,1]上的“局部奇函數(shù)”;q:曲線g(x)=x2+(5m+1)x+1與x軸交于不同的兩點;若“p∧q”為假命題,“p∨q”為真命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x-$\frac{1}{2}$ax2-ln(1+x),其中a∈R.
(1)討論f(x)的單調(diào)性;
(2)若f(x)在[0,+∞)上的最大值是0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示,則該幾何體的表面積為(  )
A.30B.31.5C.33D.35.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,四邊形ABCD是梯形.四邊形CDEF是矩形.且平面ABCD⊥平面CDEF,∠BAD=90°,AB∥CD,M是線段AE上的動點.
(Ⅰ)試確定點M的位置,使AC∥平面DMF,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,且∠AED=45°,AE=$\sqrt{2}$,AD=$\frac{1}{2}$CD,連接AF,求三棱錐M-ADF的體積.

查看答案和解析>>

同步練習(xí)冊答案