(文科)已知{an}是等差數(shù)列,公差d≠0,{an}的部分項(xiàng)組成下列數(shù)列,ak1,ak2,ak3,…,akn此數(shù)列恰好為等比數(shù)列,其中k1=1,k2=5,k3=17,求k1+k2+k3+…+kn

答案:
解析:

  解:,

  為等比數(shù)列可得

    

  即:  

  成等比數(shù)列

  是公比為3的等比數(shù)列  

  

  

  又等差數(shù)列  

  

    

    


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:如果數(shù)列{an}的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長(zhǎng),則稱{an}為“三角形”數(shù)列.對(duì)于“三角形”數(shù)列{an},如果函數(shù)y=f(x)使得bn=f(an)仍為一個(gè)“三角形”數(shù)列,則稱y=f(x)是數(shù)列{an}的“保三角形函數(shù)”,(n∈N).
(1)已知{an}是首項(xiàng)為2,公差為1的等差數(shù)列,若f(x)=kx,(k>1)是數(shù)列{an}的“保三角形函數(shù)”,求k的取值范圍;
(2)已知數(shù)列{cn}的首項(xiàng)為2010,Sn是數(shù)列{cn}的前n項(xiàng)和,且滿足4Sn+1-3Sn=8040,證明{cn}是“三角形”數(shù)列;
(3)[文科]若g(x)=lgx是(2)中數(shù)列{cn}的“保三角形函數(shù)”,問數(shù)列{cn}最多有多少項(xiàng).
[理科]根據(jù)“保三角形函數(shù)”的定義,對(duì)函數(shù)h(x)=-x2+2x,x∈[1,A],和數(shù)列1,1+d,1+2d,(d>0)提出一個(gè)正確的命題,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an} 是等差數(shù)列,其中a1=23,a4=16
(1)求{an} 的通項(xiàng);
(2)求{an}前n項(xiàng)和Sn的最大值;
(3)(文科不做)求|a1|+|a2|+|a3|+…+|an|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文科)已知{an}是單調(diào)遞增的等差數(shù)列,首項(xiàng)a1=3,前n項(xiàng)和為Sn,數(shù)列{bn}是等比數(shù)列,首項(xiàng)b1=1,且a2b2=12,S3+b2=20.
(Ⅰ)求{an}和{bn}的通項(xiàng)公式.
(Ⅱ)令Cn=nbn(n∈N+),求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文科)已知1,
2
,2,…為等比數(shù)列,當(dāng)an=8
2
時(shí),則n=
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖北省部分重點(diǎn)中學(xué)高三(上)起點(diǎn)數(shù)學(xué)試卷(文理合卷)(解析版) 題型:解答題

(文科)已知{an}是單調(diào)遞增的等差數(shù)列,首項(xiàng)a1=3,前n項(xiàng)和為Sn,數(shù)列{bn}是等比數(shù)列,首項(xiàng)b1=1,且a2b2=12,S3+b2=20.
(Ⅰ)求{an}和{bn}的通項(xiàng)公式.
(Ⅱ)令Cn=nbn(n∈N+),求{cn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案