A. | ($\sqrt{2}$,$\sqrt{3}$) | B. | ($\sqrt{3}$,2) | C. | (0,2) | D. | ($\sqrt{2}$,2) |
分析 利用正弦定理列出關(guān)系式,將A=2B代入,利用二倍角的正弦函數(shù)公式化簡(jiǎn),約分得到結(jié)果為2cosB,根據(jù)三角形的內(nèi)角和定理及三角形ABC為銳角三角形,求出B的范圍,進(jìn)而確定出cosB的范圍,即可得出所求式子的范圍.
解答 解:∵A=2B,
∴根據(jù)正弦定理$\frac{a}{sinA}$=$\frac{sinB}$得:$\frac{a}$=$\frac{sinA}{sinB}$═$\frac{2sinBcosB}{sinB}$=2cosB,
∵A+B+C=180°,
∴3B+C=180°,即C=180°-3B,
∵C為銳角,
∴30°<B<60°,
又0°<A=2B<90°,
∴30°<B<45°,
∴$\frac{\sqrt{2}}{2}$<cosB<$\frac{\sqrt{3}}{2}$,即$\sqrt{2}$<2cosB<$\sqrt{3}$,
則$\frac{a}$的取值范圍是($\sqrt{2}$,$\sqrt{3}$).
故選:A.
點(diǎn)評(píng) 本題考查了正弦定理,余弦函數(shù)的圖象與性質(zhì),以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1:2 | B. | 1:3 | C. | 1:4 | D. | 1:8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | 3 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | -$\frac{2}{3}$ | C. | $\frac{1}{4}$ | D. | -$\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com